Abstract

With the help of photometric calculations based on ray-tracing algorithms, we have optimized the efficiency of the optical pumping of a Nd:YAG ceramic slab laser. The slab pumping is performed by means of two horizontal diode laser array stacks. The use of two small reflecting walls allows the sort of duct coupling that is capable of significantly improving the performance of the system. Our first experiments with a simple direct coupling provided a maximum extraction of slightly more than 160 W at a 20% slope efficiency level. The use of the optimized short duct coupling leads us to the extraction of 350 W with a slope efficiency of 51%, making use of the same diode arrays. The laser design is suitable for the construction of cw sources with a power output above 1 kW.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ciofini, A. Lapucci, “Compact scalable diode-pumped Nd:YAG ceramic slab laser,” Appl. Opt. 43, 6174–6179 (2004).
    [CrossRef] [PubMed]
  2. A. Lapucci, M. Ciofini, “Compact high-power ceramic slab laser,” in Proceedings of the XV International Symposium on Gas Flow, Chemical Lasers and High Power Lasers, J. Kodimova, ed., Proc. SPIE5777, 369–372 (2005).
    [CrossRef]
  3. J. E. Bernard, A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
    [CrossRef] [PubMed]
  4. R. J. Shine, A. J. Alfrey, R. L. Byer, “40-W cw, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser,” Opt. Lett. 20, 459–461 (1995).
    [CrossRef] [PubMed]
  5. D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
    [CrossRef]
  6. T. S. Rutherford, W. M. Tulloch, S. Sinha, R. L. Byer, “Yb:YAG and Nd:YAG edge-pumped slab lasers,” Opt. Lett. 26, 986–988 (2001).
    [CrossRef]
  7. G. D. Goodno, S. Palese, J. Harkenrider, H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett. 26, 1672–1674 (2001).
    [CrossRef]
  8. K. Du, D. Li, H. Zhang, P. Shi, X. Wei, R. Diart, “Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width,” Opt. Lett. 28, 87–89 (2003).
    [CrossRef] [PubMed]
  9. H. Zhang, K. Du, D. Li, P. Shi, Y. Wang, R. Diart, “Diode-end-pumped electro-optically Q-switched Nd:YLF slab laser,” Appl. Opt. 43, 2940–2943 (2004).
    [CrossRef] [PubMed]
  10. Industrial Microphotonics Company, Northorp Grumman Cutting Edge Optronics, Saint Charles, Mo. accessed January2005; www.imclaser.com .
  11. Lambda Research CorporationLittleton, Mass. accessed January2005; www.lambdares.com .

2004 (2)

2003 (1)

2001 (2)

2000 (1)

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

1995 (1)

1993 (1)

Alcock, A. J.

Alfrey, A. J.

Bernard, J. E.

Byer, R. L.

Ciofini, M.

M. Ciofini, A. Lapucci, “Compact scalable diode-pumped Nd:YAG ceramic slab laser,” Appl. Opt. 43, 6174–6179 (2004).
[CrossRef] [PubMed]

A. Lapucci, M. Ciofini, “Compact high-power ceramic slab laser,” in Proceedings of the XV International Symposium on Gas Flow, Chemical Lasers and High Power Lasers, J. Kodimova, ed., Proc. SPIE5777, 369–372 (2005).
[CrossRef]

Diart, R.

Du, K.

Goodno, G. D.

Hamilton, M. W.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

Harkenrider, J.

Injeyan, H.

Lapucci, A.

M. Ciofini, A. Lapucci, “Compact scalable diode-pumped Nd:YAG ceramic slab laser,” Appl. Opt. 43, 6174–6179 (2004).
[CrossRef] [PubMed]

A. Lapucci, M. Ciofini, “Compact high-power ceramic slab laser,” in Proceedings of the XV International Symposium on Gas Flow, Chemical Lasers and High Power Lasers, J. Kodimova, ed., Proc. SPIE5777, 369–372 (2005).
[CrossRef]

Li, D.

Middlemiss, B.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

Mudge, D.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

Munch, J.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

Ostermeyer, M.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

Ottaway, D. J.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

Palese, S.

Rutherford, T. S.

Shi, P.

Shine, R. J.

Sinha, S.

Tulloch, W. M.

Veitch, P. J.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

Wang, Y.

Wei, X.

Zhang, H.

Appl. Opt. (2)

IEEE J. Sel. Topics Quantum Electron. (1)

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, M. W. Hamilton, “Power scalable TEM00 cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Topics Quantum Electron. 6, 643–649 (2000).
[CrossRef]

Opt. Lett. (5)

Other (3)

A. Lapucci, M. Ciofini, “Compact high-power ceramic slab laser,” in Proceedings of the XV International Symposium on Gas Flow, Chemical Lasers and High Power Lasers, J. Kodimova, ed., Proc. SPIE5777, 369–372 (2005).
[CrossRef]

Industrial Microphotonics Company, Northorp Grumman Cutting Edge Optronics, Saint Charles, Mo. accessed January2005; www.imclaser.com .

Lambda Research CorporationLittleton, Mass. accessed January2005; www.lambdares.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Layout and dimensions of the horizontal diode array.

Fig. 2
Fig. 2

Schematic drawing of a transverse section of the YAG slab with the three different pumping geometries: (a) unconfined diode radiation pumping, (b) diode radiation confined by parallel reflectors, (c) diode radiation confined by skewed reflectors.

Fig. 3
Fig. 3

Typical ray-tracing irradiance patterns impinging on the plane of the slab’s lateral face. Bottom, free propagation; middle, propagation in the presence of parallel reflectors (D = 6 mm, θ = 0); top, propagation in the presence of skewed reflectors (D = 5 mm, θ = 10).

Fig. 4
Fig. 4

Calculated relative intensity profiles on the plane of the slab’s lateral face in the case of free propagation and of parallel flat reflectors.

Fig. 5
Fig. 5

Coupling and uniformity coefficients as a function of the reflector separation D (θ = 0).

Fig. 6
Fig. 6

Coupling and uniformity coefficients as a function of the skew angle θ (D = 5 mm).

Fig. 7
Fig. 7

Measured relative intensity profiles of diode-emitted light in the case of free propagation and of parallel flat copper reflectors (D = 6 mm, θ = 0).

Fig. 8
Fig. 8

Experimental image of the fluorescence when the Nd:YAG ceramic slab is laterally pumped with the two diode arrays without the reflectors.

Fig. 9
Fig. 9

Experimental image of the fluorescence when the Nd:YAG ceramic slab is laterally pumped with the two diode arrays and parallel copper reflectors (D = 6 mm, θ = 0).

Fig. 10
Fig. 10

Experimental image of the fluorescence when the Nd:YAG ceramic slab is laterally pumped with the two diode arrays and skewed copper reflectors (D = 5 mm, θ = 10).

Fig. 11
Fig. 11

Relative intensity profiles of the fluorescence light when the Nd:YAG ceramic slab is laterally pumped with the two diode arrays without reflectors and with parallel flat copper reflectors (extracted from data of Figs. 9 and 10, respectively).

Fig. 12
Fig. 12

Laser power extraction curves for the three different diode-pumping configurations: eff., efficiency; coupl., coupling.

Tables (1)

Tables Icon

Table 1 Maximum Coupling Coefficients and Corresponding Uniformity Factors Obtained from Photometric Ray-Tracing Simulations in the Three Optical Configurations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U = σ I I ,

Metrics