Abstract

With the help of photometric calculations based on ray-tracing algorithms, we have optimized the efficiency of the optical pumping of a Nd:YAG ceramic slab laser. The slab pumping is performed by means of two horizontal diode laser array stacks. The use of two small reflecting walls allows the sort of duct coupling that is capable of significantly improving the performance of the system. Our first experiments with a simple direct coupling provided a maximum extraction of slightly more than 160 W at a 20% slope efficiency level. The use of the optimized short duct coupling leads us to the extraction of 350 W with a slope efficiency of 51%, making use of the same diode arrays. The laser design is suitable for the construction of cw sources with a power output above 1 kW.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription