Abstract

Different sources of stitch errors are identified and simulated in a 200 mm long chirped grating. In each case, the effect on the group-delay ripple and transmission spectrum is investigated. The anticipated response in a typical 10 Gbit/s transmission system is specifically considered. From the simulations, it is clear that information about error source and magnitude can be gained directly from the transmission spectrum.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Oulette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
    [CrossRef]
  2. I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
    [CrossRef]
  3. P. Li, J. Shuisheng, Y. Fengping, N. Tigang, W. Zhi, “Longhaul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
    [CrossRef]
  4. S. Jamal, J. C. Cartledge, “Variation in the performance of multispan 10-Gb/s systems due to the group delay ripple of dispersion compensating fiber Bragg gratings,” J. Lightwave Technol. 20, 28–35 (1999).
    [CrossRef]
  5. L. Poladian, “Understanding profile-induced group-delay ripple in Bragg gratings,” Appl. Opt. 39, 1920–1923 (2000).
    [CrossRef]
  6. M. R. Matthews, J. Porque, C. D. Hoyle, M. J. Vos, T. L. Smith, “Simple model of errors in chirped fiber gratings,” Opt. Express 12, 189–197 (2004).
    [CrossRef] [PubMed]
  7. M. Yamada, K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987).
    [CrossRef] [PubMed]
  8. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” Photon. Technol. Lett. 10, 1476–1478 (1998).
    [CrossRef]
  9. M. Sumetsky, B. Eggleton, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002).
    [CrossRef] [PubMed]

2004 (1)

2003 (1)

P. Li, J. Shuisheng, Y. Fengping, N. Tigang, W. Zhi, “Longhaul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
[CrossRef]

2002 (1)

2000 (1)

1999 (2)

S. Jamal, J. C. Cartledge, “Variation in the performance of multispan 10-Gb/s systems due to the group delay ripple of dispersion compensating fiber Bragg gratings,” J. Lightwave Technol. 20, 28–35 (1999).
[CrossRef]

I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
[CrossRef]

1998 (1)

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” Photon. Technol. Lett. 10, 1476–1478 (1998).
[CrossRef]

1987 (2)

Bungarzeanu, C.

I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
[CrossRef]

Cartledge, J. C.

Durkin, M.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” Photon. Technol. Lett. 10, 1476–1478 (1998).
[CrossRef]

Eggleton, B.

Ennser, K.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” Photon. Technol. Lett. 10, 1476–1478 (1998).
[CrossRef]

Fengping, Y.

P. Li, J. Shuisheng, Y. Fengping, N. Tigang, W. Zhi, “Longhaul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
[CrossRef]

Gourhant, J.

I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
[CrossRef]

Gurib, S.

I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
[CrossRef]

Hoyle, C. D.

Ibsen, M.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” Photon. Technol. Lett. 10, 1476–1478 (1998).
[CrossRef]

Jamal, S.

Kashyap, R.

I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
[CrossRef]

Laming, R. I.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” Photon. Technol. Lett. 10, 1476–1478 (1998).
[CrossRef]

Li, P.

P. Li, J. Shuisheng, Y. Fengping, N. Tigang, W. Zhi, “Longhaul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
[CrossRef]

Matthews, M. R.

Oulette, F.

Poladian, L.

Porque, J.

Riant, I.

I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
[CrossRef]

Sakuda, K.

Sansonetti, P.

I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
[CrossRef]

Shuisheng, J.

P. Li, J. Shuisheng, Y. Fengping, N. Tigang, W. Zhi, “Longhaul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
[CrossRef]

Smith, T. L.

Sumetsky, M.

Tigang, N.

P. Li, J. Shuisheng, Y. Fengping, N. Tigang, W. Zhi, “Longhaul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
[CrossRef]

Vos, M. J.

Yamada, M.

Zervas, M. N.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” Photon. Technol. Lett. 10, 1476–1478 (1998).
[CrossRef]

Zhi, W.

P. Li, J. Shuisheng, Y. Fengping, N. Tigang, W. Zhi, “Longhaul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
[CrossRef]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5, 1312–1324 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

P. Li, J. Shuisheng, Y. Fengping, N. Tigang, W. Zhi, “Longhaul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photon. Technol. Lett. (1)

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” Photon. Technol. Lett. 10, 1476–1478 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

Group delay and GDR for a perfectly stitched 200 mm long grating with a chirp rate of +5 pm/mm.

Fig. 2
Fig. 2

Changes in the GDR for a stitch phase error of 10 deg at grating center as compared with the perfectly stitched case. The dashed curve corresponds to a bit rate of 10 Gbits/s in a transmission system.

Fig. 3
Fig. 3

Maximum induced GDR amplitude versus phase error. The inset shows details for small error values.

Fig. 4
Fig. 4

Maximum induced none-averaged GDR versus chirp rate for different error types.

Fig. 5
Fig. 5

Maximum induced none-averaged GDR at 10 deg phase error versus refractive-index modulation depth. The GDR for wavelengths with main reflection centers before (solid curve) and after (dashed curve) the stitch are shown separately.

Fig. 6
Fig. 6

Changes in the GDR as compared with the perfectly stitched case for a stitch modulation error at a grating center of 6% or 4.1 × 10−6.

Fig. 7
Fig. 7

Maximum induced GDR versus modulation error. The inset shows details for small error values.

Fig. 8
Fig. 8

Maximum induced none-averaged GDR at constant modulation error versus refractive-index modulation depth. The solid curve depicts the relation for a constant relative difference of 6% between the grating parts before and after the stitch, and the dashed and dotted curves show the case for a constant absolute difference of 4.1 × 10−6.

Fig. 9
Fig. 9

Changes in the group delay as compared with the perfectly stitched case for ±3.4 pm stitch pitch errors at grating center.

Fig. 10
Fig. 10

Maximum induced none-averaged GDR including offset versus pitch error. The inset shows details for small error values.

Fig. 11
Fig. 11

Maximum induced none-averaged GDR at a 10 pm pitch error versus refractive-index modulation depth.

Fig. 12
Fig. 12

Changes in the GDR as compared with the perfectly stitched case for a 100 µm wide shutter error at grating center.

Fig. 13
Fig. 13

Maximum induced GDR versus shutter error.

Fig. 14
Fig. 14

Maximum induced none-averaged GDR at 100 µm shutter error versus refractive-index modulation depth.

Fig. 15
Fig. 15

Changes in the GDR as compared with the perfectly stitched case for a dose error at grating center corresponding to a pitch change of 36 pm or a total change in refractive index of 6.8 × 10−5. This corresponds to the modulation depth in a simulated grating. The change takes place over a distance of 50 µm, or roughly the length of a subgrating in the simulation.

Fig. 16
Fig. 16

Maximum induced GDR versus dose-error-induced pitch change. The 36 pm corresponds to a dose reduction from maximum to zero in the simulated grating.

Fig. 17
Fig. 17

Transmitted spectrum for a stitch with a 10 deg phase error at grating center.

Fig. 18
Fig. 18

Maximum transmitted central ripple amplitude for different grating strengths versus stitch phase error.

Fig. 19
Fig. 19

Transmitted spectra for (positive) pitch, shutter, and modulation errors.

Fig. 20
Fig. 20

Maximum central ripple amplitude in the transmission spectrum versus pitch error for a grating with a given chirp.

Fig. 21
Fig. 21

Maximum central ripple amplitude in the transmission spectrum versus shutter error for a grating with a given chirp.

Fig. 22
Fig. 22

Transmission level difference in the transmission spectrum before and after the stitch versus modulation error.

Metrics