Abstract

We examine the effects of encoder and decoder mismatch due to wavelength and time chip misalignments on the bit-error rate (BER) performance of two-dimensional (2D) wavelength–time optical code-division multiple access systems. We investigate several instances of misalignment in the desired user encoder and decoder as well as in the interfering user encoders. Our simulation methodology can be used to analyze any type of 2D wavelength–time code family as well as probability distribution for misalignment. For illustration purposes, we consider codes generated by use of the depth-first search algorithm and a Gaussian distribution for the misalignment. Our simulation results show that, in the case of a misalignment in either wavelength or time chip, the variance of the distribution for the misalignment must be below 0.01 for the corresponding degradation in the BER system’s performance to be less than 1 order of magnitude compared with that when there is no mismatch between the encoders and decoders. The tolerances become even more strict when misalignments in both wavelength and time chips are considered. Furthermore, our results show that the effect of misalignment in wavelength (time chips) is the same regardless of the number of wavelengths (time chips) used in the codes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Stok, E. H. Sargent, “Lighting the local area: optical code-division multiple access and quality of service provisioning,” IEEE Network 14(6), 42–46 (2000).
    [CrossRef]
  2. J. Shah, “Optical CDMA,” Opt. Photon. News 14(4), 42–47 (2003).
    [CrossRef]
  3. P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547–554 (1986).
    [CrossRef]
  4. J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. 1. Fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
    [CrossRef]
  5. M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol. 13, 534–545 (1995).
    [CrossRef]
  6. C. F. Lam, D. T. K. Tong, M. C. Wu, E. Yablonovitch, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoder,” IEEE Photon. Technol. Lett. 10, 1504–1506 (1998).
    [CrossRef]
  7. A. M. Weiner, J. P. Heritage, J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
    [CrossRef] [PubMed]
  8. J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
    [CrossRef]
  9. K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
    [CrossRef]
  10. E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett. 4, 1160–1162 (1992).
    [CrossRef]
  11. L. Tančevski, I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett. 30, 1388–1390 (1994).
    [CrossRef]
  12. E. Jugl, T. Kuhwald, K. Iversen, “Algorithm for construction of (0, 1)-matrix codes,” Electron. Lett. 33, 227–229 (1997).
    [CrossRef]
  13. H. Fathallah, L. A. Rusch, S. LaRochelle, “Passive optical fast frequency-hop CDMA communications systems,” J. Lightwave Technol. 17, 397–405 (1999).
    [CrossRef]
  14. S. Kim, K. Yu, N. Park, “A new family of space/wavelength/time spread three dimensional optical code for OCDMA networks,” J. Lightwave Technol. 18, 502–511 (2000).
    [CrossRef]
  15. A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, J. P. Heritage, J.-P. Morookian, “Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications,” J. Lightwave Technol. 18, 1685–1696 (2000).
    [CrossRef]
  16. K. Yu, N. Park, “Design of new family of two-dimensional wavelength-time spreading codes for optical code division multiple access networks,” Electron. Lett. 35, 830–831 (1999).
    [CrossRef]
  17. C. Zuo, W. M. Hongtu, J. Lin, “The impact of group velocity on frequency-hopping optical code division multiple access system,” J. Lightwave Technol. 19, 1416–1419 (2001).
    [CrossRef]
  18. E. K. H. Ng, G. E. Weichenberg, E. H. Sargent, “Dispersion in multiwavelength optical code-division-multiple-access systems: impacts and remedies,” IEEE Trans. Commun. 50, 1811–1816 (2002).
    [CrossRef]
  19. A. Sahin, A. E. Willner, “System limitations due to chromatic dispersion and receiver bandwidth for 2-D time-wavelength OCDMA systems,” in Conference Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS ’03 (Institute of Electrical and Electronics Engineers, 2003), Vol. 2, pp. 551–552.
    [CrossRef]
  20. L. Tančevski, L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4, 264–266 (2000).
    [CrossRef]
  21. We note that good mechanisms exist to keep the wavelengths of optical filters locked. Moreover, the filter responses can be designed to have boxlike shapes with flat tops and high adjacent-channel cross-talk rejection. Thus, from a practical perspective, we expect wavelength misalignments to be typically a fraction of one wavelength band. Optical path differences (improperly defined delay lines), however, can cause time chip misalignments to extend beyond one time chip. The actual extent will depend on the precision in fabricating and controlling the optical delays as well as on the chip rate of the system. As the chip rate increases, the corresponding chip time decreases, such that a given optical path difference will result in time misalignments extending over a larger fraction of a time chip or even over multiple time chips. In our simulations we do not consider path differences that extend beyond a single time chip, though such situations are straightforward and easy to handle.
  22. R. M. H. Yim, L. R. Chen, J. Bajcsy, “Design and performance of 2-D codes for wavelength–time optical CDMA,” IEEE Photon. Technol. Lett. 14, 714–716 (2002).
    [CrossRef]
  23. R. M. H. Yim, “New approaches to optical code-division multiple access,” M. Eng. thesis (Department of Electrical and Computer Engineering, McGill University, 2002).

2003 (1)

J. Shah, “Optical CDMA,” Opt. Photon. News 14(4), 42–47 (2003).
[CrossRef]

2002 (2)

E. K. H. Ng, G. E. Weichenberg, E. H. Sargent, “Dispersion in multiwavelength optical code-division-multiple-access systems: impacts and remedies,” IEEE Trans. Commun. 50, 1811–1816 (2002).
[CrossRef]

R. M. H. Yim, L. R. Chen, J. Bajcsy, “Design and performance of 2-D codes for wavelength–time optical CDMA,” IEEE Photon. Technol. Lett. 14, 714–716 (2002).
[CrossRef]

2001 (1)

2000 (4)

S. Kim, K. Yu, N. Park, “A new family of space/wavelength/time spread three dimensional optical code for OCDMA networks,” J. Lightwave Technol. 18, 502–511 (2000).
[CrossRef]

A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, J. P. Heritage, J.-P. Morookian, “Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications,” J. Lightwave Technol. 18, 1685–1696 (2000).
[CrossRef]

A. Stok, E. H. Sargent, “Lighting the local area: optical code-division multiple access and quality of service provisioning,” IEEE Network 14(6), 42–46 (2000).
[CrossRef]

L. Tančevski, L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4, 264–266 (2000).
[CrossRef]

1999 (2)

K. Yu, N. Park, “Design of new family of two-dimensional wavelength-time spreading codes for optical code division multiple access networks,” Electron. Lett. 35, 830–831 (1999).
[CrossRef]

H. Fathallah, L. A. Rusch, S. LaRochelle, “Passive optical fast frequency-hop CDMA communications systems,” J. Lightwave Technol. 17, 397–405 (1999).
[CrossRef]

1998 (1)

C. F. Lam, D. T. K. Tong, M. C. Wu, E. Yablonovitch, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoder,” IEEE Photon. Technol. Lett. 10, 1504–1506 (1998).
[CrossRef]

1997 (1)

E. Jugl, T. Kuhwald, K. Iversen, “Algorithm for construction of (0, 1)-matrix codes,” Electron. Lett. 33, 227–229 (1997).
[CrossRef]

1995 (1)

M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol. 13, 534–545 (1995).
[CrossRef]

1994 (2)

L. Tančevski, I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett. 30, 1388–1390 (1994).
[CrossRef]

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

1992 (1)

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett. 4, 1160–1162 (1992).
[CrossRef]

1990 (1)

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

1989 (1)

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. 1. Fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
[CrossRef]

1988 (1)

1986 (1)

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547–554 (1986).
[CrossRef]

Andonovic, I.

L. Tančevski, I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett. 30, 1388–1390 (1994).
[CrossRef]

Bajcsy, J.

R. M. H. Yim, L. R. Chen, J. Bajcsy, “Design and performance of 2-D codes for wavelength–time optical CDMA,” IEEE Photon. Technol. Lett. 14, 714–716 (2002).
[CrossRef]

Chen, L. R.

R. M. H. Yim, L. R. Chen, J. Bajcsy, “Design and performance of 2-D codes for wavelength–time optical CDMA,” IEEE Photon. Technol. Lett. 14, 714–716 (2002).
[CrossRef]

Fan, T. R.

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547–554 (1986).
[CrossRef]

Fathallah, H.

Feng, H. X. C.

Gagliardi, R. M.

Garmire, E. M.

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett. 4, 1160–1162 (1992).
[CrossRef]

Heritage, J. P.

Hongtu, W. M.

Iversen, K.

E. Jugl, T. Kuhwald, K. Iversen, “Algorithm for construction of (0, 1)-matrix codes,” Electron. Lett. 33, 227–229 (1997).
[CrossRef]

Jugl, E.

E. Jugl, T. Kuhwald, K. Iversen, “Algorithm for construction of (0, 1)-matrix codes,” Electron. Lett. 33, 227–229 (1997).
[CrossRef]

Kavehrad, M.

M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol. 13, 534–545 (1995).
[CrossRef]

Kim, S.

Kitayama, K.

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

Kuhwald, T.

E. Jugl, T. Kuhwald, K. Iversen, “Algorithm for construction of (0, 1)-matrix codes,” Electron. Lett. 33, 227–229 (1997).
[CrossRef]

Lam, C. F.

C. F. Lam, D. T. K. Tong, M. C. Wu, E. Yablonovitch, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoder,” IEEE Photon. Technol. Lett. 10, 1504–1506 (1998).
[CrossRef]

LaRochelle, S.

Lin, J.

Mendez, A. J.

A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, J. P. Heritage, J.-P. Morookian, “Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications,” J. Lightwave Technol. 18, 1685–1696 (2000).
[CrossRef]

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett. 4, 1160–1162 (1992).
[CrossRef]

Morookian, J.-P.

Ng, E. K. H.

E. K. H. Ng, G. E. Weichenberg, E. H. Sargent, “Dispersion in multiwavelength optical code-division-multiple-access systems: impacts and remedies,” IEEE Trans. Commun. 50, 1811–1816 (2002).
[CrossRef]

Park, E.

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett. 4, 1160–1162 (1992).
[CrossRef]

Park, N.

S. Kim, K. Yu, N. Park, “A new family of space/wavelength/time spread three dimensional optical code for OCDMA networks,” J. Lightwave Technol. 18, 502–511 (2000).
[CrossRef]

K. Yu, N. Park, “Design of new family of two-dimensional wavelength-time spreading codes for optical code division multiple access networks,” Electron. Lett. 35, 830–831 (1999).
[CrossRef]

Prucnal, P. R.

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547–554 (1986).
[CrossRef]

Rusch, L. A.

L. Tančevski, L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4, 264–266 (2000).
[CrossRef]

H. Fathallah, L. A. Rusch, S. LaRochelle, “Passive optical fast frequency-hop CDMA communications systems,” J. Lightwave Technol. 17, 397–405 (1999).
[CrossRef]

Sahin, A.

A. Sahin, A. E. Willner, “System limitations due to chromatic dispersion and receiver bandwidth for 2-D time-wavelength OCDMA systems,” in Conference Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS ’03 (Institute of Electrical and Electronics Engineers, 2003), Vol. 2, pp. 551–552.
[CrossRef]

Salehi, J. A.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. 1. Fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
[CrossRef]

A. M. Weiner, J. P. Heritage, J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
[CrossRef] [PubMed]

Santoro, M. A.

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547–554 (1986).
[CrossRef]

Sargent, E. H.

E. K. H. Ng, G. E. Weichenberg, E. H. Sargent, “Dispersion in multiwavelength optical code-division-multiple-access systems: impacts and remedies,” IEEE Trans. Commun. 50, 1811–1816 (2002).
[CrossRef]

A. Stok, E. H. Sargent, “Lighting the local area: optical code-division multiple access and quality of service provisioning,” IEEE Network 14(6), 42–46 (2000).
[CrossRef]

Shah, J.

J. Shah, “Optical CDMA,” Opt. Photon. News 14(4), 42–47 (2003).
[CrossRef]

Stok, A.

A. Stok, E. H. Sargent, “Lighting the local area: optical code-division multiple access and quality of service provisioning,” IEEE Network 14(6), 42–46 (2000).
[CrossRef]

Tancevski, L.

L. Tančevski, L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4, 264–266 (2000).
[CrossRef]

L. Tančevski, I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett. 30, 1388–1390 (1994).
[CrossRef]

Tong, D. T. K.

C. F. Lam, D. T. K. Tong, M. C. Wu, E. Yablonovitch, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoder,” IEEE Photon. Technol. Lett. 10, 1504–1506 (1998).
[CrossRef]

Weichenberg, G. E.

E. K. H. Ng, G. E. Weichenberg, E. H. Sargent, “Dispersion in multiwavelength optical code-division-multiple-access systems: impacts and remedies,” IEEE Trans. Commun. 50, 1811–1816 (2002).
[CrossRef]

Weiner, A. M.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

A. M. Weiner, J. P. Heritage, J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
[CrossRef] [PubMed]

Willner, A. E.

A. Sahin, A. E. Willner, “System limitations due to chromatic dispersion and receiver bandwidth for 2-D time-wavelength OCDMA systems,” in Conference Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS ’03 (Institute of Electrical and Electronics Engineers, 2003), Vol. 2, pp. 551–552.
[CrossRef]

Wu, M. C.

C. F. Lam, D. T. K. Tong, M. C. Wu, E. Yablonovitch, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoder,” IEEE Photon. Technol. Lett. 10, 1504–1506 (1998).
[CrossRef]

Yablonovitch, E.

C. F. Lam, D. T. K. Tong, M. C. Wu, E. Yablonovitch, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoder,” IEEE Photon. Technol. Lett. 10, 1504–1506 (1998).
[CrossRef]

Yim, R. M. H.

R. M. H. Yim, L. R. Chen, J. Bajcsy, “Design and performance of 2-D codes for wavelength–time optical CDMA,” IEEE Photon. Technol. Lett. 14, 714–716 (2002).
[CrossRef]

R. M. H. Yim, “New approaches to optical code-division multiple access,” M. Eng. thesis (Department of Electrical and Computer Engineering, McGill University, 2002).

Yu, K.

S. Kim, K. Yu, N. Park, “A new family of space/wavelength/time spread three dimensional optical code for OCDMA networks,” J. Lightwave Technol. 18, 502–511 (2000).
[CrossRef]

K. Yu, N. Park, “Design of new family of two-dimensional wavelength-time spreading codes for optical code division multiple access networks,” Electron. Lett. 35, 830–831 (1999).
[CrossRef]

Zaccarin, D.

M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol. 13, 534–545 (1995).
[CrossRef]

Zuo, C.

Electron. Lett. (3)

L. Tančevski, I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett. 30, 1388–1390 (1994).
[CrossRef]

E. Jugl, T. Kuhwald, K. Iversen, “Algorithm for construction of (0, 1)-matrix codes,” Electron. Lett. 33, 227–229 (1997).
[CrossRef]

K. Yu, N. Park, “Design of new family of two-dimensional wavelength-time spreading codes for optical code division multiple access networks,” Electron. Lett. 35, 830–831 (1999).
[CrossRef]

IEEE Commun. Lett. (1)

L. Tančevski, L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4, 264–266 (2000).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

IEEE Network (1)

A. Stok, E. H. Sargent, “Lighting the local area: optical code-division multiple access and quality of service provisioning,” IEEE Network 14(6), 42–46 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. F. Lam, D. T. K. Tong, M. C. Wu, E. Yablonovitch, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoder,” IEEE Photon. Technol. Lett. 10, 1504–1506 (1998).
[CrossRef]

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett. 4, 1160–1162 (1992).
[CrossRef]

R. M. H. Yim, L. R. Chen, J. Bajcsy, “Design and performance of 2-D codes for wavelength–time optical CDMA,” IEEE Photon. Technol. Lett. 14, 714–716 (2002).
[CrossRef]

IEEE Trans. Commun. (2)

E. K. H. Ng, G. E. Weichenberg, E. H. Sargent, “Dispersion in multiwavelength optical code-division-multiple-access systems: impacts and remedies,” IEEE Trans. Commun. 50, 1811–1816 (2002).
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. 1. Fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
[CrossRef]

J. Lightwave Technol. (7)

Opt. Lett. (1)

Opt. Photon. News (1)

J. Shah, “Optical CDMA,” Opt. Photon. News 14(4), 42–47 (2003).
[CrossRef]

Other (3)

A. Sahin, A. E. Willner, “System limitations due to chromatic dispersion and receiver bandwidth for 2-D time-wavelength OCDMA systems,” in Conference Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS ’03 (Institute of Electrical and Electronics Engineers, 2003), Vol. 2, pp. 551–552.
[CrossRef]

We note that good mechanisms exist to keep the wavelengths of optical filters locked. Moreover, the filter responses can be designed to have boxlike shapes with flat tops and high adjacent-channel cross-talk rejection. Thus, from a practical perspective, we expect wavelength misalignments to be typically a fraction of one wavelength band. Optical path differences (improperly defined delay lines), however, can cause time chip misalignments to extend beyond one time chip. The actual extent will depend on the precision in fabricating and controlling the optical delays as well as on the chip rate of the system. As the chip rate increases, the corresponding chip time decreases, such that a given optical path difference will result in time misalignments extending over a larger fraction of a time chip or even over multiple time chips. In our simulations we do not consider path differences that extend beyond a single time chip, though such situations are straightforward and easy to handle.

R. M. H. Yim, “New approaches to optical code-division multiple access,” M. Eng. thesis (Department of Electrical and Computer Engineering, McGill University, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Example of a code using m = 6 wavelengths, n = 6 time chips, and weight w = 6. (a) Ideal situation. The pulse at position (λ2, t4) suffers (b) a wavelength misalignment, (c) a time chip misalignment, and (d) both a wavelength and a time chip misalignment.

Fig. 2
Fig. 2

Flow chart of the simulation process.

Fig. 3
Fig. 3

BER histogram of a 12-user, code-type (32, 16, 6), IPP situation with only a wavelength misalignment, where σ λ 2 = 0.05.

Fig. 4
Fig. 4

(a) Average BER and (b) standard deviation of the BER as a function of σ λ 2 for K = 12 and (32, 16, 6) DFSCs.

Fig. 5
Fig. 5

Average BER as a function of σ λ 2 for K = 12 and (16, 32, 6) DFSCs.

Fig. 6
Fig. 6

BER as a function of K for (32, 16, 6) DFSCs; σ λ 2 = 0.1.

Fig. 7
Fig. 7

Average BER as a function of σ t 2 for K = 12 and (32, 16, 6) DFSCs.

Fig. 8
Fig. 8

BER as a function of K for (32, 16, 6) DFSCs; σ t 2 = 0.1.

Fig. 9
Fig. 9

Contour plots for average BER as a function of both σ t 2 and σ t 2 for (32, 16, 6) DFSCs: (a) IPP and (b) PPI.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

BER = Q ( SIR 2 ) = Q { 1 2 [ w 2 ( K 1 ) σ ¯ p q 2 ] 1 / 2 } ,

Metrics