Abstract

We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton–Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995), pp. 15–46.
    [CrossRef]
  2. J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
    [CrossRef] [PubMed]
  3. S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, 1996), pp. 83–94.
    [CrossRef]
  4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [CrossRef]
  5. S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 364–369.
  6. A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
    [CrossRef] [PubMed]
  7. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
    [CrossRef] [PubMed]
  8. S. R. Kamath, C. V. Morr, T. Schenz, “Laser light scattering and microscopic properties of milkfat globules in Swiss cheese whey low density lipid-containing fraction,” Lebensm.-Wiss. Technol. 31, 274–278 (1998).
    [CrossRef]
  9. Y. Woo, Y. Terazawa, J. Y. Chen, C. Iyo, F. Terada, S. Kawano, “Development of a new measurement unit (MilkSpec-1) for rapid determination of fat, lactose, and protein in raw milk using near-infrared transmittance spectroscopy,” Appl. Spectrosc. 56, 599–604 (2002).
    [CrossRef]
  10. H. Martens, R. Steiner, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Appl. Physiol. 9, 625–635 (1991).
  11. H. Schnablegger, O. Glatter, “Sizing of colloidal particles with light scattering: corrections for beginning multiple scattering,” Appl. Opt. 34, 3489–3501 (1995).
    [CrossRef] [PubMed]
  12. A. A. Kokhanovsky, R. Weichert, “Multiple light scattering in laser particle sizing,” Appl. Opt. 40, 1507–1513 (2001).
    [CrossRef]
  13. M. Peake, B. Mazzachi, A. Fudge, R. Bais, “Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?” Ann. Clin. Biochem. 38, 533–540 (2001).
    [CrossRef] [PubMed]
  14. B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001).
    [PubMed]
  15. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  16. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998).
    [CrossRef]
  17. J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000).
    [CrossRef]
  18. S. Willmann, H. J. Schwarzmaier, A. Terenji, I. V. Yaroslavsky, P. Hering, “Quantitative microspectrophotometry in turbid media,” Appl. Opt. 38, 4904–4913 (1999).
    [CrossRef]
  19. S. V. Chapra, R. P. Canale, Numerical Methods for Engineers (McGraw-Hill, 1997).
  20. L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  21. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  22. J. E. Jackson, “Principal component and factor analysis: Part I. Principal components,” J. Quality Technol. 12, 201–213 (1980).
  23. J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
    [CrossRef] [PubMed]
  24. A. Pifferi, P. Taroni, G. Valentini, S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37, 2774–2780 (1998).
    [CrossRef]
  25. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive realtime determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
    [CrossRef]

2003 (1)

2002 (1)

2001 (4)

M. Peake, B. Mazzachi, A. Fudge, R. Bais, “Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?” Ann. Clin. Biochem. 38, 533–540 (2001).
[CrossRef] [PubMed]

B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001).
[PubMed]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive realtime determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
[CrossRef]

A. A. Kokhanovsky, R. Weichert, “Multiple light scattering in laser particle sizing,” Appl. Opt. 40, 1507–1513 (2001).
[CrossRef]

2000 (1)

1999 (2)

S. Willmann, H. J. Schwarzmaier, A. Terenji, I. V. Yaroslavsky, P. Hering, “Quantitative microspectrophotometry in turbid media,” Appl. Opt. 38, 4904–4913 (1999).
[CrossRef]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

1998 (4)

S. R. Kamath, C. V. Morr, T. Schenz, “Laser light scattering and microscopic properties of milkfat globules in Swiss cheese whey low density lipid-containing fraction,” Lebensm.-Wiss. Technol. 31, 274–278 (1998).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998).
[CrossRef]

A. Pifferi, P. Taroni, G. Valentini, S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37, 2774–2780 (1998).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

1995 (3)

1993 (1)

1991 (1)

H. Martens, R. Steiner, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Appl. Physiol. 9, 625–635 (1991).

1990 (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1988 (1)

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

1980 (1)

J. E. Jackson, “Principal component and factor analysis: Part I. Principal components,” J. Quality Technol. 12, 201–213 (1980).

Andersson-Engels, S.

Aruna, P.

Bais, R.

M. Peake, B. Mazzachi, A. Fudge, R. Bais, “Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?” Ann. Clin. Biochem. 38, 533–540 (2001).
[CrossRef] [PubMed]

Beek, J. F.

Berg, R.

Canale, R. P.

S. V. Chapra, R. P. Canale, Numerical Methods for Engineers (McGraw-Hill, 1997).

Chapra, S. V.

S. V. Chapra, R. P. Canale, Numerical Methods for Engineers (McGraw-Hill, 1997).

Chen, J. Y.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Dalgaard, T.

Dam, J. S.

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Eick, A. A.

Ellis, D. J.

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

Fabricius, P. E.

Feather, J. W.

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

Freyer, J. P.

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Fudge, A.

M. Peake, B. Mazzachi, A. Fudge, R. Bais, “Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?” Ann. Clin. Biochem. 38, 533–540 (2001).
[CrossRef] [PubMed]

Glatter, O.

Goldbach, T.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998).
[CrossRef]

Gruber, R.

B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001).
[PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Hering, P.

Hielscher, A. H.

Horn, K.

B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001).
[PubMed]

Iyo, C.

Jackson, J. E.

J. E. Jackson, “Principal component and factor analysis: Part I. Principal components,” J. Quality Technol. 12, 201–213 (1980).

Jacques, S. L.

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 364–369.

S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, 1996), pp. 83–94.
[CrossRef]

Johnson, T. M.

Kamath, S. R.

S. R. Kamath, C. V. Morr, T. Schenz, “Laser light scattering and microscopic properties of milkfat globules in Swiss cheese whey low density lipid-containing fraction,” Lebensm.-Wiss. Technol. 31, 274–278 (1998).
[CrossRef]

Kawano, S.

Kokhanovsky, A. A.

Küster, H.

B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001).
[PubMed]

Leslie, G.

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

Martens, H.

H. Martens, R. Steiner, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Appl. Physiol. 9, 625–635 (1991).

Mazzachi, B.

M. Peake, B. Mazzachi, A. Fudge, R. Bais, “Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?” Ann. Clin. Biochem. 38, 533–540 (2001).
[CrossRef] [PubMed]

Morr, C. V.

S. R. Kamath, C. V. Morr, T. Schenz, “Laser light scattering and microscopic properties of milkfat globules in Swiss cheese whey low density lipid-containing fraction,” Lebensm.-Wiss. Technol. 31, 274–278 (1998).
[CrossRef]

Mourant, J. R.

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Nilsson, A. M. K.

Peake, M.

M. Peake, B. Mazzachi, A. Fudge, R. Bais, “Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?” Ann. Clin. Biochem. 38, 533–540 (2001).
[CrossRef] [PubMed]

Pedersen, C. B.

Pickering, J. W.

Pifferi, A.

Prahl, S. A.

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Rolinski, B.

B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001).
[PubMed]

Schenz, T.

S. R. Kamath, C. V. Morr, T. Schenz, “Laser light scattering and microscopic properties of milkfat globules in Swiss cheese whey low density lipid-containing fraction,” Lebensm.-Wiss. Technol. 31, 274–278 (1998).
[CrossRef]

Schnablegger, H.

Schwarzmaier, H. J.

S. Willmann, H. J. Schwarzmaier, A. Terenji, I. V. Yaroslavsky, P. Hering, “Quantitative microspectrophotometry in turbid media,” Appl. Opt. 38, 4904–4913 (1999).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998).
[CrossRef]

Shen, D.

Star, W. M.

A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995), pp. 15–46.
[CrossRef]

Steiner, R.

H. Martens, R. Steiner, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Appl. Physiol. 9, 625–635 (1991).

Sterenborg, H. J. C. M.

Swartling, J.

Taroni, P.

Terada, F.

Terazawa, Y.

Terenji, A.

Ugele, B.

B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001).
[PubMed]

Valentini, G.

van Gemert, M. J. C.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995), pp. 15–46.
[CrossRef]

van Wieringen, N.

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Weichert, R.

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995), pp. 15–46.
[CrossRef]

Willmann, S.

Wilson, B. C.

A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995), pp. 15–46.
[CrossRef]

Woo, Y.

Yaroslavsky, A. N.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998).
[CrossRef]

Yaroslavsky, I. V.

S. Willmann, H. J. Schwarzmaier, A. Terenji, I. V. Yaroslavsky, P. Hering, “Quantitative microspectrophotometry in turbid media,” Appl. Opt. 38, 4904–4913 (1999).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998).
[CrossRef]

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Ann. Clin. Biochem. (1)

M. Peake, B. Mazzachi, A. Fudge, R. Bais, “Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?” Ann. Clin. Biochem. 38, 533–540 (2001).
[CrossRef] [PubMed]

Appl. Opt. (10)

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000).
[CrossRef]

H. Schnablegger, O. Glatter, “Sizing of colloidal particles with light scattering: corrections for beginning multiple scattering,” Appl. Opt. 34, 3489–3501 (1995).
[CrossRef] [PubMed]

A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, G. Valentini, S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37, 2774–2780 (1998).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

S. Willmann, H. J. Schwarzmaier, A. Terenji, I. V. Yaroslavsky, P. Hering, “Quantitative microspectrophotometry in turbid media,” Appl. Opt. 38, 4904–4913 (1999).
[CrossRef]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive realtime determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
[CrossRef]

A. A. Kokhanovsky, R. Weichert, “Multiple light scattering in laser particle sizing,” Appl. Opt. 40, 1507–1513 (2001).
[CrossRef]

J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Clin. Chem. (1)

B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn, “Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care,” Clin. Chem. 47, 1845–1847 (2001).
[PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Appl. Physiol. (1)

H. Martens, R. Steiner, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” J. Appl. Physiol. 9, 625–635 (1991).

J. Biomed. Opt. (2)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1998).
[CrossRef]

J. Quality Technol. (1)

J. E. Jackson, “Principal component and factor analysis: Part I. Principal components,” J. Quality Technol. 12, 201–213 (1980).

Lebensm.-Wiss. Technol. (1)

S. R. Kamath, C. V. Morr, T. Schenz, “Laser light scattering and microscopic properties of milkfat globules in Swiss cheese whey low density lipid-containing fraction,” Lebensm.-Wiss. Technol. 31, 274–278 (1998).
[CrossRef]

Phys. Med. Biol. (1)

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

Other (4)

S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, 1996), pp. 83–94.
[CrossRef]

S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 364–369.

A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, 1995), pp. 15–46.
[CrossRef]

S. V. Chapra, R. P. Canale, Numerical Methods for Engineers (McGraw-Hill, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometric configuration of setup for measuring µa, µs, and g, where R and T are the spatially resolved diffuse reflectance and transmittance, respectively, with radial distance r. The angularly resolved transmittance is denoted as α, where θ is the deflection angle and ϕ is the acceptance angle. Finally, ds is the sample thickness, db is the diameter of the collimated source beam, and dw is the thickness of the cuvette walls.

Fig. 2
Fig. 2

Four different setups used to predict optical properties with various combinations of spatially or angularly resolved data. Each single setup can be used for determination of (a) µa, µs, and g; (b) µs and g; (c) µa and µs; (d) µa, µs, and g. See Fig. 1 for nomenclature.

Fig. 3
Fig. 3

Prediction errors of (a) µa, (b) µs, and (c) g as a function of rT and rR with the setup of Fig. 2(d) in conjunction with a prediction data set defined by inequalities (6). The deflection angles of α1 and α2 were 0° and 5°, respectively.

Fig. 4
Fig. 4

Predicted values of (a) µa, (b) µs, and (c) g as a function of the true values obtained with the setup of Fig. 2(d) (ds = 1.0 mm) in conjunction with downscaled prediction data (ds = 0.5 mm). The corresponding prediction errors of µa, µs, and g are 2.2, 0.40, and 0.59%, respectively. The dashed lines in (b) indicate the µs ranges of three subsets of calibration and prediction data. The resulting µa, µs, and g prediction errors obtained from these subranges are 0.59, 0.58, and 0.26%, respectively.

Fig. 5
Fig. 5

Prediction errors of µa, µs, and g as a function of (a) the acceptance angle ϕa of α1 and (b) the number of photons used to generate the prediction data. The optical property ranges of the prediction data are in both cases defined by inequalities (6), and ds = 1.0 mm.

Fig. 6
Fig. 6

Experimental prediction results of µa and µs based on R and α1 measurements on epoxy phantoms. The reference values of the phantoms were determined using an IS setup.23 MEP, mean error of prediction.

Fig. 7
Fig. 7

(a) Measured and (b) MC simulated R, T, α1, and α2 data. The measurements were carried out on milk samples with varying water contents in a flow cuvette, and the MC data were extracted from the calibration set defined by inequalities (1). Note that the R data in (a) were discarded because of a faulty detector.

Tables (3)

Tables Icon

Table 1 Mean Prediction Errors from the Analyses on the Four Configurations in Fig. 2 at Optimal Settings for R, T, α1, and α2

Tables Icon

Table 2 Optimum Angles and Distances of the Four Configurations in Fig. 2

Tables Icon

Table 3 Prediction Errors for Various µs Ranges from the Configuration of Fig. 2(d)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

0 < µ a < 2 cm 1 , 10 < µ s < 200 cm 1 , 0.85 < g < 0.99 .
[ α 1 , 1 α 1 , 2 α 1 , 3 α 2 , 1 α 2 , 2 α 2 , 3 α I , 1 α I , 2 α I , 3 ] = [ g 1 ( µ a , 1 , µ s , 1 , g 1 ) g 2 ( µ a , 1 , µ s , 1 , g 1 ) g 3 ( µ a , 1 , µ s , 1 , g 1 ) g 1 ( µ a , 2 , µ s , 2 , g 2 ) g 2 ( µ a , 2 , µ s , 2 , g 2 ) g 3 ( µ a , 2 , µ s , 2 , g 2 ) g 1 ( µ a , I , µ s , I , g I ) g 2 ( µ a , I , µ s , I , g I ) g 3 ( µ a , I , µ s , I , g I ) ] .
g 1 ( µ a , µ s , g ) = k = 0 M l = 0 M q = 0 M a k l q µ a k µ s l g q , g 2 ( µ a , µ s , g ) = k = 0 M l = 0 M q = 0 M b k l q µ a k µ s l g q , g 3 ( µ a , µ s , g ) = k = 0 M l = 0 M q = 0 M c k l q µ a k µ s l g q .
F ( µ a , µ s , g ) = g 1 α 1 , meas , G ( µ a , µ s , g ) = g 2 α 2 , meas , H ( µ a , µ s , g ) = g 3 α 3 , meas ,
[ F ( µ a , k , µ s , k , g k ) G ( µ a , k , µ s , k , g k ) H ( µ a , k , µ s , k , g k ) ] = [ F µ a F µ s F g G µ a G µ s G g H µ a H µ s H g ] [ h a , k h s , k h g , k ] [ µ a , k + 1 µ s , k + 1 g k + 1 ] = [ µ a , k µ s , k g k ] + [ h a , k h s , k h g , k ] k = 0 , 1 , 2 , 3 , ,
0 < µ a < 2 cm 1 , 50 < µ s < 100 cm 1 , 0.85 < g < 0.95 .

Metrics