Abstract

We report studies of the analyses of and compensation for group dispersion to improve the axial resolution of high-speed optical coherence tomography (OCT) by acousto-optic modulation (AOM). Theoretical modeling and experiments reveal that the high-order group dispersion induced by acousto-optic crystals broadens the measured coherence length (Lc) and thus degrades the axial resolution of OCT imaging. Based on our experimental studies, we can compensate for the dispersion to less than 50% broadening of the source Lc by adjusting the grating-lens-based optical delay in the reference arm and can further eliminate it by inserting like acousto-optic crystals in the sample arm of the OCT system. The results demonstrate that this AOM-mediated OCT system permits high-performance OCT imaging at A-scan rates of as much as 4 kHz by use of a resonant scanner. Because of its ultrastable direct frequency modulation, this AOM-mediated OCT system can potentially improve the performance of high-speed Doppler OCT techniques.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. M. Rollins, J. Izatt, M. Kulkarni, S. Yazdanfar, R. Ungarunyawee, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  4. J. J. Armstrong, M. S. Leigh, I. D. Walton, A. V. Zvyagin, S. A. Alexandrov, S. Schwer, D. D. Sampson, “In vivo size and shape measurement of the human upper airway using endoscopic long-range optical coherence tomography,” Opt. Express 11, 1817–1826 (2003).
    [CrossRef] [PubMed]
  5. T. Xie, H. Xie, G. K. Fedder, Y. Pan, “Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers,” Appl. Opt. 42, 6422–6426 (2003).
    [CrossRef] [PubMed]
  6. G. Yao, L. Wang, “Propagation of polarized light in turbid media: simulated animation sequences,” Opt. Express 7, 198–203 (2000).
    [CrossRef] [PubMed]
  7. V. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).
    [CrossRef]
  8. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  9. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004).
    [CrossRef] [PubMed]
  10. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  11. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wandsworth, U. Bunting, D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:glass laser and nonlinear fiber,” Opt. Express 11, 3290–3297 (2003).
    [CrossRef] [PubMed]
  12. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, “Compact, low-cost Ti:Al2O3laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28, 905–907 (2003).
    [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11, 3598–3604 (2003).
  14. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–560 (1993).
    [CrossRef] [PubMed]
  15. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  16. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [CrossRef]
  17. T. Xie, Z. Wang, Y. Pan, “High-speed optical coherence tomography using fiber-optic acousto-optic phase modulation,” Opt. Express 11, 3210–3219 (2003).
    [CrossRef] [PubMed]
  18. M. R. Fetterman, J. C. Davis, H.-S. Tan, W. Yang, D. Goswami, J.-K. Rhee, W. S. Warren, “Fast-frequency-hopping modulation and detection demonstration,” J. Opt. Soc. Am. B 18, 1372–1376 (2001).
    [CrossRef]
  19. C. K. Hitzenberger, P. Trost, P.-W. Lo, Q. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761 (2003).
    [CrossRef] [PubMed]
  20. Y. T. Pan, R. Bimgruber, R. Rosperich, R. Engelhardt, “Optical coherence tomography in turbid tissues: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
    [CrossRef] [PubMed]
  21. E. D. J. Smith, A. V. Zvyagin, D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27, 1998–2000 (2002).
    [CrossRef]
  22. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
    [CrossRef]
  23. T. Xie, M. L. Zeidel, Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Express 10, 1431–1443 (2002).
    [CrossRef] [PubMed]
  24. Y. Pan, T. Xie, S. Bastacky, S. Meyers, M. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett. 28, 2485–2487 (2003).
    [CrossRef] [PubMed]
  25. V. Westphal, S. Yazdanfar, A. Rollins, J. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).
    [CrossRef]

2004

2003

J. J. Armstrong, M. S. Leigh, I. D. Walton, A. V. Zvyagin, S. A. Alexandrov, S. Schwer, D. D. Sampson, “In vivo size and shape measurement of the human upper airway using endoscopic long-range optical coherence tomography,” Opt. Express 11, 1817–1826 (2003).
[CrossRef] [PubMed]

T. Xie, H. Xie, G. K. Fedder, Y. Pan, “Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers,” Appl. Opt. 42, 6422–6426 (2003).
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wandsworth, U. Bunting, D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:glass laser and nonlinear fiber,” Opt. Express 11, 3290–3297 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, “Compact, low-cost Ti:Al2O3laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28, 905–907 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11, 3598–3604 (2003).

T. Xie, Z. Wang, Y. Pan, “High-speed optical coherence tomography using fiber-optic acousto-optic phase modulation,” Opt. Express 11, 3210–3219 (2003).
[CrossRef] [PubMed]

C. K. Hitzenberger, P. Trost, P.-W. Lo, Q. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761 (2003).
[CrossRef] [PubMed]

Y. Pan, T. Xie, S. Bastacky, S. Meyers, M. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett. 28, 2485–2487 (2003).
[CrossRef] [PubMed]

2002

2001

2000

1999

1998

1997

1995

1993

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1969

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[CrossRef]

Aguirre, A. D.

Ahnelt, P. K.

Alexandrov, S. A.

Anger, E. M.

Armstrong, J. J.

Bastacky, S.

Bimgruber, R.

Birks, T. A.

Boppart, S. A.

Bouma, B. E.

Bourquin, S.

Bunting, U.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Chu, K. C.

Cowey, A.

Davis, J. C.

de Boer, J. F.

Dienes, A.

Drexler, W.

Engelhardt, R.

Fedder, G. K.

Fercher, A. F.

Fetterman, M. R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Goswami, D.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hartl, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Heritage, J. P.

Hermann, B.

Hitzenberger, C. K.

Hsiung, P.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J.

Izatt, J. A.

Jung, G.

Kartner, F. X.

Ko, T. H.

Kopf, D.

Kowalczyk, A.

Kulkarni, M.

Kwong, K. F.

Le, T.

Leigh, M. S.

Leitgeb, R.

Leitgeb, R. A.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lo, P.-W.

Meyers, S.

Morgan, J. E.

Morgner, U.

Nelson, J. S.

Pan, Y.

Pan, Y. T.

Park, B. H.

Pitris, C.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rhee, J.-K.

Rollins, A.

Rollins, A. M.

Rosperich, R.

Sampson, D. D.

Sattmann, H.

Saxer, C.

Schmetterer, L.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schubert, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Schwer, S.

Smith, E. D. J.

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stur, M.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tan, H.-S.

Tearney, G. J.

Tempea, G.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[CrossRef]

Trost, P.

Ungarunyawee, R.

Unterhuber, A.

Walton, I. D.

Wandsworth, W. J.

Wang, L.

Wang, Z.

Warren, W. S.

Westphal, V.

Wojtkowski, M.

Xiang, S.

Xie, H.

Xie, T.

Yakovlev, V.

Yang, W.

Yankelevich, D.

Yao, G.

Yazdanfar, S.

Yun, S. H.

Zeidel, M.

Zeidel, M. L.

Zhao, Y.

Zhou, Q.

Zvyagin, A. V.

Appl. Opt.

IEEE J. Quantum Electron.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

C. K. Hitzenberger, P. Trost, P.-W. Lo, Q. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761 (2003).
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wandsworth, U. Bunting, D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:glass laser and nonlinear fiber,” Opt. Express 11, 3290–3297 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11, 3598–3604 (2003).

J. J. Armstrong, M. S. Leigh, I. D. Walton, A. V. Zvyagin, S. A. Alexandrov, S. Schwer, D. D. Sampson, “In vivo size and shape measurement of the human upper airway using endoscopic long-range optical coherence tomography,” Opt. Express 11, 1817–1826 (2003).
[CrossRef] [PubMed]

A. M. Rollins, J. Izatt, M. Kulkarni, S. Yazdanfar, R. Ungarunyawee, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
[CrossRef] [PubMed]

G. Yao, L. Wang, “Propagation of polarized light in turbid media: simulated animation sequences,” Opt. Express 7, 198–203 (2000).
[CrossRef] [PubMed]

T. Xie, M. L. Zeidel, Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Express 10, 1431–1443 (2002).
[CrossRef] [PubMed]

T. Xie, Z. Wang, Y. Pan, “High-speed optical coherence tomography using fiber-optic acousto-optic phase modulation,” Opt. Express 11, 3210–3219 (2003).
[CrossRef] [PubMed]

Opt. Lett.

E. D. J. Smith, A. V. Zvyagin, D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27, 1998–2000 (2002).
[CrossRef]

Y. Pan, T. Xie, S. Bastacky, S. Meyers, M. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett. 28, 2485–2487 (2003).
[CrossRef] [PubMed]

V. Westphal, S. Yazdanfar, A. Rollins, J. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).
[CrossRef]

V. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–560 (1993).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, “Compact, low-cost Ti:Al2O3laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28, 905–907 (2003).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of an OCT imaging system using an AOM. A fiberoptic AOM is inserted in the reference arm to provide stable fAOM = 2 MHz (tunable) frequency modulation, which, in combination with a RSOD, allows for rapid reference scanning for fast and high-fidelity OCT imaging. BBS, broadband source; LD, aiming laser; PD, photodiode; CMs, fiber-optic collimators; G, servo scanner; FPC, fiber polarization controller; PC, personal computer. A pair of AO crystals is included in the sample arm for dispersion compensation.

Fig. 2
Fig. 2

Theoretical autocorrelations after dispersion compensation for an OCT system with AOM in the reference arm: grating shift b to compensate for (a) zero, (b) one, and (c) two AMTIR-1 crystals placed in the sample arm. BBS: λc = 1310 nm, Δλ = 78 nm.

Fig. 3
Fig. 3

Measured cross-correlation functions after dispersion compensation for an AOM-based OCT system: grating shift b to compensate for (a) zero, (b) one, and (c) two AMTIR-1 crystals placed in the sample arm.

Fig. 4
Fig. 4

Two-dimensional OCT images of a porcine bladder imaged by an OCT system (a) with a regular RSOD and (b) with an AOM-mediated RSOD. Image size, 2 mm lateral × 6 mm vertical. U, urothelium; LP, lamina propria; M, muscularis; CI, area in the LP with cystitis and a denuded urothelium. Because of inflammation, the bladder morphology was less clear than that of a normal porcine bladder.

Fig. 5
Fig. 5

Rabbit bladder imaged by OCT with an AOM-mediated RSOD at an A-scan rate of 4 kHz: U, urothelium; LP, lamina propria; M, muscularis; F, attached fatty tissue. The two-dimensional OCT image size is 2 mm × 6 mm, displayed in pseudocolor (linear demodulation). The signal level ranged from −40 (bright) to −100 (dark) dB.

Fig. 6
Fig. 6

Results of theoretical modeling of the cross-correlation function of ultrabroadband OCT using an AOM-mediated RSOD for high-speed imaging after dispersion compensation: grating shift to compensate for (a) zero and (b) two AMTIR-2 crystals in the sample arm. Light source: λc = 1310 nm, Δλ = 200 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

GVD G = b λ c d 2 [ 1 ( λ / d sin θ ) 2 ] 3 / 2 ,
GVD G = b λ c d 2 .
GVD AO = ( 4 π c f AOM 2 V 2 ω 3 α f AOM ω 2 V ) D ,
GVD AO = ( π c d 2 ω 3 α 2 ω 2 d ) D .
GVD M = 2 ϕ d ω 2 = ω ( L / ν g ) ,
v g = c / ( n λ d n d λ ) .
n 2 ( λ ) = 1 + i = 1 3 B i λ 2 λ 2 C i ,
ϕ ( ω ) = ϕ ( ω 0 ) + ϕ ( ω 0 ) d ω + ϕ ( ω 0 ) ( d ω ) 2 2 ! + ϕ ( ω 0 ) ( d ω ) 3 3 ! + ,
I ( t ) = F 1 { I i ( ω ) exp [ i ϕ ( ω ) ] } ,
I i ( 4 f λ ω cos ω t / d ) I i ( 4 f λ ω / d ) ,

Metrics