Abstract

A Monte Carlo technique has been developed to simulate the transillumination laser computed tomography of tissue-engineered blood vessels. The blood vessel was modeled as a single cylinder layer mounted on a tubular mandrel. Sequences of images were acquired while rotating the mandrel. The tomographic image was reconstructed by applying a standard Radon transform. Angular discrimination was applied to simulate a spatial filter, which was used to reject multiply scattered photons. The simulation results indicated that the scattering effect can be overcome with angular discrimination because of the thin tissue thickness. However, any refractive-index mismatch among the tissue, the surrounding media, and the mandrel could produce significant distortions in the reconstructed image.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Nerem, A. E. Ensley, “The tissue engineering of blood vessels and the heart,” Am. J. Transplant. 4, 36–42 (2004).
    [CrossRef] [PubMed]
  2. N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
    [CrossRef]
  3. R. H. Schmedlen, W. M. Elbjeirami, A. S. Gobin, J. L. West, “Tissue engineered small-diameter vascular grafts,” Clin. Plast. Surg. 30, 507–517 (2003).
    [CrossRef] [PubMed]
  4. R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  5. B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979, 1997.
  6. B. Das, K. Yoo, R. R. Alfano, “Ultrafast time gated imaging,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef]
  7. S. Marengo, C. Pepin, T. Goulet, D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 5, 895–901 (1999).
    [CrossRef]
  8. Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
    [CrossRef]
  9. J. C. Gladish, G. Yao, N. L’Heureux, M. A. Haidekker, “Optical transillumination tomography for imaging of tissue-engineered blood vessels,” Ann. Biomed. Eng. 33, 323–327 (2005).
    [CrossRef] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
    [CrossRef]
  11. D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9, 339–346 (2004).
    [CrossRef] [PubMed]
  12. Y. Otani, T. Shimada, T. Yoshizawa, N. Umeda, “Two-dimensional birefringence measurement using the phase shifting technique,” Opt. Eng. 33, 1604–1609 (1994).
    [CrossRef]
  13. L. Wang, S. L. Jacques, L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  14. L. Henyey, J. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  15. L. A. Shepp, J. B. Kruskal, “Computerized tomography: the new medical x-ray technology,” Am. Math. Monthly 85, 420–439 (1978).
    [CrossRef]
  16. J. M. C. van Gemert, R. M. Verdaasdonk, E. G. Stassen, G. Schets, “Optical properties of human blood vessel wall and plaque,” Lasers Surg. Med. 5, 235–273 (1985).
    [CrossRef] [PubMed]

2005 (1)

J. C. Gladish, G. Yao, N. L’Heureux, M. A. Haidekker, “Optical transillumination tomography for imaging of tissue-engineered blood vessels,” Ann. Biomed. Eng. 33, 323–327 (2005).
[CrossRef] [PubMed]

2004 (2)

R. M. Nerem, A. E. Ensley, “The tissue engineering of blood vessels and the heart,” Am. J. Transplant. 4, 36–42 (2004).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9, 339–346 (2004).
[CrossRef] [PubMed]

2003 (1)

R. H. Schmedlen, W. M. Elbjeirami, A. S. Gobin, J. L. West, “Tissue engineered small-diameter vascular grafts,” Clin. Plast. Surg. 30, 507–517 (2003).
[CrossRef] [PubMed]

2002 (1)

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

2001 (1)

N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
[CrossRef]

1999 (1)

S. Marengo, C. Pepin, T. Goulet, D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 5, 895–901 (1999).
[CrossRef]

1995 (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1994 (1)

Y. Otani, T. Shimada, T. Yoshizawa, N. Umeda, “Two-dimensional birefringence measurement using the phase shifting technique,” Opt. Eng. 33, 1604–1609 (1994).
[CrossRef]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

1985 (1)

J. M. C. van Gemert, R. M. Verdaasdonk, E. G. Stassen, G. Schets, “Optical properties of human blood vessel wall and plaque,” Lasers Surg. Med. 5, 235–273 (1985).
[CrossRef] [PubMed]

1978 (1)

L. A. Shepp, J. B. Kruskal, “Computerized tomography: the new medical x-ray technology,” Am. Math. Monthly 85, 420–439 (1978).
[CrossRef]

1941 (1)

L. Henyey, J. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Akatsuka, T.

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Alfano, R. R.

Andriantsitohaina, R.

N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
[CrossRef]

Auger, F. A.

N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Churmakov, D. Y.

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9, 339–346 (2004).
[CrossRef] [PubMed]

Das, B.

Devaraj, B.

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Elbjeirami, W. M.

R. H. Schmedlen, W. M. Elbjeirami, A. S. Gobin, J. L. West, “Tissue engineered small-diameter vascular grafts,” Clin. Plast. Surg. 30, 507–517 (2003).
[CrossRef] [PubMed]

Ensley, A. E.

R. M. Nerem, A. E. Ensley, “The tissue engineering of blood vessels and the heart,” Am. J. Transplant. 4, 36–42 (2004).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Germain, L.

N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
[CrossRef]

Gladish, J. C.

J. C. Gladish, G. Yao, N. L’Heureux, M. A. Haidekker, “Optical transillumination tomography for imaging of tissue-engineered blood vessels,” Ann. Biomed. Eng. 33, 323–327 (2005).
[CrossRef] [PubMed]

Gobin, A. S.

R. H. Schmedlen, W. M. Elbjeirami, A. S. Gobin, J. L. West, “Tissue engineered small-diameter vascular grafts,” Clin. Plast. Surg. 30, 507–517 (2003).
[CrossRef] [PubMed]

Goulet, T.

S. Marengo, C. Pepin, T. Goulet, D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 5, 895–901 (1999).
[CrossRef]

Greenhalgh, D. A.

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9, 339–346 (2004).
[CrossRef] [PubMed]

Greenstein, J.

L. Henyey, J. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Haidekker, M. A.

J. C. Gladish, G. Yao, N. L’Heureux, M. A. Haidekker, “Optical transillumination tomography for imaging of tissue-engineered blood vessels,” Ann. Biomed. Eng. 33, 323–327 (2005).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Henyey, L.

L. Henyey, J. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Houde, D.

S. Marengo, C. Pepin, T. Goulet, D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 5, 895–901 (1999).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Ishikawa, A.

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Jacques, S. L.

L. Wang, S. L. Jacques, L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Kruskal, J. B.

L. A. Shepp, J. B. Kruskal, “Computerized tomography: the new medical x-ray technology,” Am. Math. Monthly 85, 420–439 (1978).
[CrossRef]

L’Heureux, N.

J. C. Gladish, G. Yao, N. L’Heureux, M. A. Haidekker, “Optical transillumination tomography for imaging of tissue-engineered blood vessels,” Ann. Biomed. Eng. 33, 323–327 (2005).
[CrossRef] [PubMed]

N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
[CrossRef]

Lagaud, G. J. L.

N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Marengo, S.

S. Marengo, C. Pepin, T. Goulet, D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 5, 895–901 (1999).
[CrossRef]

Meglinski, I. V.

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9, 339–346 (2004).
[CrossRef] [PubMed]

Nerem, R. M.

R. M. Nerem, A. E. Ensley, “The tissue engineering of blood vessels and the heart,” Am. J. Transplant. 4, 36–42 (2004).
[CrossRef] [PubMed]

Otani, Y.

Y. Otani, T. Shimada, T. Yoshizawa, N. Umeda, “Two-dimensional birefringence measurement using the phase shifting technique,” Opt. Eng. 33, 1604–1609 (1994).
[CrossRef]

Pepin, C.

S. Marengo, C. Pepin, T. Goulet, D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 5, 895–901 (1999).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Sasaki, Y.

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Schets, G.

J. M. C. van Gemert, R. M. Verdaasdonk, E. G. Stassen, G. Schets, “Optical properties of human blood vessel wall and plaque,” Lasers Surg. Med. 5, 235–273 (1985).
[CrossRef] [PubMed]

Schmedlen, R. H.

R. H. Schmedlen, W. M. Elbjeirami, A. S. Gobin, J. L. West, “Tissue engineered small-diameter vascular grafts,” Clin. Plast. Surg. 30, 507–517 (2003).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Shepp, L. A.

L. A. Shepp, J. B. Kruskal, “Computerized tomography: the new medical x-ray technology,” Am. Math. Monthly 85, 420–439 (1978).
[CrossRef]

Shimada, T.

Y. Otani, T. Shimada, T. Yoshizawa, N. Umeda, “Two-dimensional birefringence measurement using the phase shifting technique,” Opt. Eng. 33, 1604–1609 (1994).
[CrossRef]

Stassen, E. G.

J. M. C. van Gemert, R. M. Verdaasdonk, E. G. Stassen, G. Schets, “Optical properties of human blood vessel wall and plaque,” Lasers Surg. Med. 5, 235–273 (1985).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Stoclet, J. C.

N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Takagi, M.

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Taniguchi, H.

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Tanosaki, S.

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Tetsuya, Y.

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Umeda, N.

Y. Otani, T. Shimada, T. Yoshizawa, N. Umeda, “Two-dimensional birefringence measurement using the phase shifting technique,” Opt. Eng. 33, 1604–1609 (1994).
[CrossRef]

van Gemert, J. M. C.

J. M. C. van Gemert, R. M. Verdaasdonk, E. G. Stassen, G. Schets, “Optical properties of human blood vessel wall and plaque,” Lasers Surg. Med. 5, 235–273 (1985).
[CrossRef] [PubMed]

Verdaasdonk, R. M.

J. M. C. van Gemert, R. M. Verdaasdonk, E. G. Stassen, G. Schets, “Optical properties of human blood vessel wall and plaque,” Lasers Surg. Med. 5, 235–273 (1985).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

West, J. L.

R. H. Schmedlen, W. M. Elbjeirami, A. S. Gobin, J. L. West, “Tissue engineered small-diameter vascular grafts,” Clin. Plast. Surg. 30, 507–517 (2003).
[CrossRef] [PubMed]

Yao, G.

J. C. Gladish, G. Yao, N. L’Heureux, M. A. Haidekker, “Optical transillumination tomography for imaging of tissue-engineered blood vessels,” Ann. Biomed. Eng. 33, 323–327 (2005).
[CrossRef] [PubMed]

Yoo, K.

Yoshizawa, T.

Y. Otani, T. Shimada, T. Yoshizawa, N. Umeda, “Two-dimensional birefringence measurement using the phase shifting technique,” Opt. Eng. 33, 1604–1609 (1994).
[CrossRef]

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Am. J. Transplant. (1)

R. M. Nerem, A. E. Ensley, “The tissue engineering of blood vessels and the heart,” Am. J. Transplant. 4, 36–42 (2004).
[CrossRef] [PubMed]

Am. Math. Monthly (1)

L. A. Shepp, J. B. Kruskal, “Computerized tomography: the new medical x-ray technology,” Am. Math. Monthly 85, 420–439 (1978).
[CrossRef]

Anal. Sci. (1)

Y. Tetsuya, S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj, T. Akatsuka, “Fundamental imaging properties of transillumination laser computed tomography based on coherence detection imaging method,” Anal. Sci. 18, 1329–1333 (2002).
[CrossRef]

Ann. Biomed. Eng. (1)

J. C. Gladish, G. Yao, N. L’Heureux, M. A. Haidekker, “Optical transillumination tomography for imaging of tissue-engineered blood vessels,” Ann. Biomed. Eng. 33, 323–327 (2005).
[CrossRef] [PubMed]

Astrophys. J. (1)

L. Henyey, J. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Clin. Plast. Surg. (1)

R. H. Schmedlen, W. M. Elbjeirami, A. S. Gobin, J. L. West, “Tissue engineered small-diameter vascular grafts,” Clin. Plast. Surg. 30, 507–517 (2003).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

FASEB J. (1)

N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. L. Lagaud, L. Germain, R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile response,” FASEB J. 15, 515–524 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Marengo, C. Pepin, T. Goulet, D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 5, 895–901 (1999).
[CrossRef]

J. Biomed. Opt. (1)

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9, 339–346 (2004).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

J. M. C. van Gemert, R. M. Verdaasdonk, E. G. Stassen, G. Schets, “Optical properties of human blood vessel wall and plaque,” Lasers Surg. Med. 5, 235–273 (1985).
[CrossRef] [PubMed]

Opt. Eng. (1)

Y. Otani, T. Shimada, T. Yoshizawa, N. Umeda, “Two-dimensional birefringence measurement using the phase shifting technique,” Opt. Eng. 33, 1604–1609 (1994).
[CrossRef]

Opt. Lett. (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 178–1181 (1991).
[CrossRef]

Other (2)

R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979, 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic setup of the optical tomography system: L, laser; E, beam expander; T, vessel; M, mandrel; SF, spatial filter; C, array detector.

Fig. 2
Fig. 2

Sample cross-sectional structure used in the Monte Carlo simulation. (a) Opaque mandrel: 1, tissue; 2, mandrel. (b) Translucent mandrel: 1, tissue; 2, mandrel; 3, inner space of the mandrel.

Fig. 3
Fig. 3

Simulation results of the tissue cylinder. (a) Projection sinogram, (b) reconstructed tissue. The gray-scale bar indicates the value of the reconstructed attenuation coefficient µt (in inverted centimeters). (c) A line [marked in (b)] crossing one bubble object in (b).

Fig. 4
Fig. 4

Projection profile of a tissue sample with a scattering coefficient of 30 cm−1: A(90°) is the attenuation measured without spatial filter and A(0.1°) is the attenuation measured with a spatial filter that has an acceptance angle of 0.1°. The two arrows indicate the locations of the bubbles.

Fig. 5
Fig. 5

Reconstruction of a tissue sample with a scattering coefficient of 30 cm−1. (a) Reconstructed image without a spatial filter. The gray-scale bar indicates the value of the reconstructed attenuation coefficient µt (in inverted centimeters). (b) Reconstructed attenuation coefficients along a line [the dashed line in (a)] crossing a liquid bubble.

Fig. 6
Fig. 6

Reconstructed image of a vessel on a solid mandrel. (a) The reconstructed image. The gray-scale bar indicates the value of the reconstructed attenuation coefficient µt (in inverted centimeters). (b) The reconstructed attenuation coefficient along a line crossing a liquid bubble.

Fig. 7
Fig. 7

Reconstructed image of a vessel on a transparent mandrel. (a) Reconstructed image without spatial filtering. The gray-scale bar indicates the value of the reconstructed attenuation coefficient µt (in inverted centimeters). (b) Reconstructed image obtained with a spatial filter that has an acceptance angle of 0.1°. (c) Projection data at 0°. (d) Ray-tracing map.

Fig. 8
Fig. 8

Effect of background refractive-index mismatch. (a) Reconstructed image without spatial filtering. The gray-scale bar indicates the value of the reconstructed attenuation coefficient µt (in inverted centimeters). (b) Reconstructed image obtained with a spatial filter that has an acceptance angle of 0.1°. (c) Ray-tracing map.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I i = I 0 i exp [ µ t ( s ) d s ] ,
µ t = µ s + µ a .
A i = ln ( I 0 i / I i ) = µ t ( s ) d s .
2 [ ( r + t ) 2 r 2 ] 1 / 2 ,
Δ α = 2 [ sin 1 ( y r ) sin 1 ( n 0 n t y r ) ] ,

Metrics