Abstract

We present a simple scheme for thermal frequency stabilization of a three-longitudinal-mode He–Ne laser at 633 nm with improved short-term (5 × 10−11 at 1-s average time) and long-term (124-kHz standard deviation for 10 h) frequency stability. A stabilized output power of 3 mW was readily obtained from the central mode by polarization-mode selection. The optical frequency of the central mode could be precisely tuned by an external frequency reference over 160 MHz with high precision or could be optically phase locked to a reference laser by use of a thermal frequency-stabilization circuit and an external acousto-optic modulator. The laser will be useful in various applications for which a laser source with high power and frequency stability is necessary.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yokoyama, T. Araki, S. Yokoyama, N. Suzuki, “A sub-nanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He–Ne lasser,” Meas. Sci. Technol. 12, 157–162 (2001).
    [Crossref]
  2. J. Lawall, J. M. Pedulla, Y. L. Coq, “Ultrastable laser array at 633 nm for real-time dimensional metrology,” Rev. Sci. Instrum. 72, 2879–2888 (2001).
    [Crossref]
  3. M.-S. Kim, S.-W. Kim, “Two-longitudinal-mode He–Ne laser for heterodyne interferometers to measure displacement,” Appl. Opt. 41, 5938–5942 (2002).
    [Crossref] [PubMed]
  4. I.-J. Eom, K.-C. Kim, H.-S. Suh, “Distance measurement method using the two intermode beat frequencies of a three-longitudinal mode He–Ne laser,” Rev. Sci. Instrum. 68, 4612–4614 (1997).
    [Crossref]
  5. T. Araki, S. Yokoyama, N. Suziki, “Simple optical distance meter using an intermode-beat modulation of a He–Ne laser and an electrical-heterodyne technique,” Rev. Sci. Instrum. 65, 1883–1888 (1994).
    [Crossref]
  6. H. S. Suh, T. H. Yoon, M. S. Chung, O. C. Choi, “Frequency and power stabilization of a three longitudinal mode He–Ne laser using secondary beat frequency,” Appl. Phys. Lett. 63, 2027–2029 (1993).
    [Crossref]
  7. J. Ishikawa, “Accurate frequency control of an internal-mirror He–Ne laser by means of a radiation-heating system,” Appl. Opt. 34, 6095–6098 (1995).
    [Crossref] [PubMed]
  8. T. Yasui, T. Araki, N. Suzuki, “Accurate stabilization of a 3 mW single-mode output He–Ne laser by intermittent frequency offset locking to an iodine stabilized He–Ne laser,” Opt. Rev. 4, 675–682 (1997).
    [Crossref]
  9. P. Y. Chien, C.-L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 62, 933–935 (1991).
    [Crossref]
  10. T. H. Yoon, J. Ye, J. L. Hall, J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm,” Appl. Phys. B 72, 221–226 (2001).
    [Crossref]
  11. A. E. Siegman, “Oscillation frequency and frequency pulling,” in Lasers (Oxford U. Press, Oxford, UK, 1986), pp. 462–473.
  12. S. Yokohama, T. Araki, N. Suzuki, “Frequency stabilization by frequency pulling for single-mode oscillation of He–Ne laser at maximum intensity,” Rev. Sci. Instrum. 66, 2788–2795 (1995).
    [Crossref]
  13. N. Mio, M.-F. Ko, W.-T. Ni, S. S. Pan, A. Araya, S. Moriwaki, K. Tsubono, “Design of a stabilized He–Ne laser by using a thin-film heater,” Appl. Opt. 32, 5944–5947 (1993).
    [Crossref] [PubMed]
  14. J. L. Hall, T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
    [Crossref] [PubMed]
  15. M. S. Taubman, J. L. Hall, “Cancellation of laser dither modulation from optical frequency standards,” Opt. Lett. 25, 311–313 (2000).
    [Crossref]
  16. M. Kourogi, B. Widiyatmoko, K. Imai, T. Shimizu, M. Ohtsu, “Accurate relative frequency cancellation between two independent lasers,” Opt. Lett. 24, 16–18 (1999).
    [Crossref]
  17. J. L. Hall, L.-S. Ma, G. Kramer, “Principles of optical phase-locking: applications to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. 23, 427–437 (1987).
    [Crossref]

2002 (1)

2001 (3)

T. H. Yoon, J. Ye, J. L. Hall, J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm,” Appl. Phys. B 72, 221–226 (2001).
[Crossref]

T. Yokoyama, T. Araki, S. Yokoyama, N. Suzuki, “A sub-nanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He–Ne lasser,” Meas. Sci. Technol. 12, 157–162 (2001).
[Crossref]

J. Lawall, J. M. Pedulla, Y. L. Coq, “Ultrastable laser array at 633 nm for real-time dimensional metrology,” Rev. Sci. Instrum. 72, 2879–2888 (2001).
[Crossref]

2000 (1)

1999 (1)

1997 (2)

I.-J. Eom, K.-C. Kim, H.-S. Suh, “Distance measurement method using the two intermode beat frequencies of a three-longitudinal mode He–Ne laser,” Rev. Sci. Instrum. 68, 4612–4614 (1997).
[Crossref]

T. Yasui, T. Araki, N. Suzuki, “Accurate stabilization of a 3 mW single-mode output He–Ne laser by intermittent frequency offset locking to an iodine stabilized He–Ne laser,” Opt. Rev. 4, 675–682 (1997).
[Crossref]

1995 (2)

S. Yokohama, T. Araki, N. Suzuki, “Frequency stabilization by frequency pulling for single-mode oscillation of He–Ne laser at maximum intensity,” Rev. Sci. Instrum. 66, 2788–2795 (1995).
[Crossref]

J. Ishikawa, “Accurate frequency control of an internal-mirror He–Ne laser by means of a radiation-heating system,” Appl. Opt. 34, 6095–6098 (1995).
[Crossref] [PubMed]

1994 (1)

T. Araki, S. Yokoyama, N. Suziki, “Simple optical distance meter using an intermode-beat modulation of a He–Ne laser and an electrical-heterodyne technique,” Rev. Sci. Instrum. 65, 1883–1888 (1994).
[Crossref]

1993 (2)

H. S. Suh, T. H. Yoon, M. S. Chung, O. C. Choi, “Frequency and power stabilization of a three longitudinal mode He–Ne laser using secondary beat frequency,” Appl. Phys. Lett. 63, 2027–2029 (1993).
[Crossref]

N. Mio, M.-F. Ko, W.-T. Ni, S. S. Pan, A. Araya, S. Moriwaki, K. Tsubono, “Design of a stabilized He–Ne laser by using a thin-film heater,” Appl. Opt. 32, 5944–5947 (1993).
[Crossref] [PubMed]

1991 (1)

P. Y. Chien, C.-L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 62, 933–935 (1991).
[Crossref]

1987 (1)

J. L. Hall, L.-S. Ma, G. Kramer, “Principles of optical phase-locking: applications to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. 23, 427–437 (1987).
[Crossref]

1984 (1)

Araki, T.

T. Yokoyama, T. Araki, S. Yokoyama, N. Suzuki, “A sub-nanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He–Ne lasser,” Meas. Sci. Technol. 12, 157–162 (2001).
[Crossref]

T. Yasui, T. Araki, N. Suzuki, “Accurate stabilization of a 3 mW single-mode output He–Ne laser by intermittent frequency offset locking to an iodine stabilized He–Ne laser,” Opt. Rev. 4, 675–682 (1997).
[Crossref]

S. Yokohama, T. Araki, N. Suzuki, “Frequency stabilization by frequency pulling for single-mode oscillation of He–Ne laser at maximum intensity,” Rev. Sci. Instrum. 66, 2788–2795 (1995).
[Crossref]

T. Araki, S. Yokoyama, N. Suziki, “Simple optical distance meter using an intermode-beat modulation of a He–Ne laser and an electrical-heterodyne technique,” Rev. Sci. Instrum. 65, 1883–1888 (1994).
[Crossref]

Araya, A.

Chartier, J.-M.

T. H. Yoon, J. Ye, J. L. Hall, J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm,” Appl. Phys. B 72, 221–226 (2001).
[Crossref]

Chien, P. Y.

P. Y. Chien, C.-L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 62, 933–935 (1991).
[Crossref]

Choi, O. C.

H. S. Suh, T. H. Yoon, M. S. Chung, O. C. Choi, “Frequency and power stabilization of a three longitudinal mode He–Ne laser using secondary beat frequency,” Appl. Phys. Lett. 63, 2027–2029 (1993).
[Crossref]

Chung, M. S.

H. S. Suh, T. H. Yoon, M. S. Chung, O. C. Choi, “Frequency and power stabilization of a three longitudinal mode He–Ne laser using secondary beat frequency,” Appl. Phys. Lett. 63, 2027–2029 (1993).
[Crossref]

Coq, Y. L.

J. Lawall, J. M. Pedulla, Y. L. Coq, “Ultrastable laser array at 633 nm for real-time dimensional metrology,” Rev. Sci. Instrum. 72, 2879–2888 (2001).
[Crossref]

Eom, I.-J.

I.-J. Eom, K.-C. Kim, H.-S. Suh, “Distance measurement method using the two intermode beat frequencies of a three-longitudinal mode He–Ne laser,” Rev. Sci. Instrum. 68, 4612–4614 (1997).
[Crossref]

Hall, J. L.

T. H. Yoon, J. Ye, J. L. Hall, J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm,” Appl. Phys. B 72, 221–226 (2001).
[Crossref]

M. S. Taubman, J. L. Hall, “Cancellation of laser dither modulation from optical frequency standards,” Opt. Lett. 25, 311–313 (2000).
[Crossref]

J. L. Hall, L.-S. Ma, G. Kramer, “Principles of optical phase-locking: applications to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. 23, 427–437 (1987).
[Crossref]

J. L. Hall, T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
[Crossref] [PubMed]

Hänsch, T. W.

Imai, K.

Ishikawa, J.

Kim, K.-C.

I.-J. Eom, K.-C. Kim, H.-S. Suh, “Distance measurement method using the two intermode beat frequencies of a three-longitudinal mode He–Ne laser,” Rev. Sci. Instrum. 68, 4612–4614 (1997).
[Crossref]

Kim, M.-S.

Kim, S.-W.

Ko, M.-F.

Kourogi, M.

Kramer, G.

J. L. Hall, L.-S. Ma, G. Kramer, “Principles of optical phase-locking: applications to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. 23, 427–437 (1987).
[Crossref]

Lawall, J.

J. Lawall, J. M. Pedulla, Y. L. Coq, “Ultrastable laser array at 633 nm for real-time dimensional metrology,” Rev. Sci. Instrum. 72, 2879–2888 (2001).
[Crossref]

Ma, L.-S.

J. L. Hall, L.-S. Ma, G. Kramer, “Principles of optical phase-locking: applications to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. 23, 427–437 (1987).
[Crossref]

Mio, N.

Moriwaki, S.

Ni, W.-T.

Ohtsu, M.

Pan, C.-L.

P. Y. Chien, C.-L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 62, 933–935 (1991).
[Crossref]

Pan, S. S.

Pedulla, J. M.

J. Lawall, J. M. Pedulla, Y. L. Coq, “Ultrastable laser array at 633 nm for real-time dimensional metrology,” Rev. Sci. Instrum. 72, 2879–2888 (2001).
[Crossref]

Shimizu, T.

Siegman, A. E.

A. E. Siegman, “Oscillation frequency and frequency pulling,” in Lasers (Oxford U. Press, Oxford, UK, 1986), pp. 462–473.

Suh, H. S.

H. S. Suh, T. H. Yoon, M. S. Chung, O. C. Choi, “Frequency and power stabilization of a three longitudinal mode He–Ne laser using secondary beat frequency,” Appl. Phys. Lett. 63, 2027–2029 (1993).
[Crossref]

Suh, H.-S.

I.-J. Eom, K.-C. Kim, H.-S. Suh, “Distance measurement method using the two intermode beat frequencies of a three-longitudinal mode He–Ne laser,” Rev. Sci. Instrum. 68, 4612–4614 (1997).
[Crossref]

Suziki, N.

T. Araki, S. Yokoyama, N. Suziki, “Simple optical distance meter using an intermode-beat modulation of a He–Ne laser and an electrical-heterodyne technique,” Rev. Sci. Instrum. 65, 1883–1888 (1994).
[Crossref]

Suzuki, N.

T. Yokoyama, T. Araki, S. Yokoyama, N. Suzuki, “A sub-nanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He–Ne lasser,” Meas. Sci. Technol. 12, 157–162 (2001).
[Crossref]

T. Yasui, T. Araki, N. Suzuki, “Accurate stabilization of a 3 mW single-mode output He–Ne laser by intermittent frequency offset locking to an iodine stabilized He–Ne laser,” Opt. Rev. 4, 675–682 (1997).
[Crossref]

S. Yokohama, T. Araki, N. Suzuki, “Frequency stabilization by frequency pulling for single-mode oscillation of He–Ne laser at maximum intensity,” Rev. Sci. Instrum. 66, 2788–2795 (1995).
[Crossref]

Taubman, M. S.

Tsubono, K.

Widiyatmoko, B.

Yasui, T.

T. Yasui, T. Araki, N. Suzuki, “Accurate stabilization of a 3 mW single-mode output He–Ne laser by intermittent frequency offset locking to an iodine stabilized He–Ne laser,” Opt. Rev. 4, 675–682 (1997).
[Crossref]

Ye, J.

T. H. Yoon, J. Ye, J. L. Hall, J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm,” Appl. Phys. B 72, 221–226 (2001).
[Crossref]

Yokohama, S.

S. Yokohama, T. Araki, N. Suzuki, “Frequency stabilization by frequency pulling for single-mode oscillation of He–Ne laser at maximum intensity,” Rev. Sci. Instrum. 66, 2788–2795 (1995).
[Crossref]

Yokoyama, S.

T. Yokoyama, T. Araki, S. Yokoyama, N. Suzuki, “A sub-nanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He–Ne lasser,” Meas. Sci. Technol. 12, 157–162 (2001).
[Crossref]

T. Araki, S. Yokoyama, N. Suziki, “Simple optical distance meter using an intermode-beat modulation of a He–Ne laser and an electrical-heterodyne technique,” Rev. Sci. Instrum. 65, 1883–1888 (1994).
[Crossref]

Yokoyama, T.

T. Yokoyama, T. Araki, S. Yokoyama, N. Suzuki, “A sub-nanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He–Ne lasser,” Meas. Sci. Technol. 12, 157–162 (2001).
[Crossref]

Yoon, T. H.

T. H. Yoon, J. Ye, J. L. Hall, J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm,” Appl. Phys. B 72, 221–226 (2001).
[Crossref]

H. S. Suh, T. H. Yoon, M. S. Chung, O. C. Choi, “Frequency and power stabilization of a three longitudinal mode He–Ne laser using secondary beat frequency,” Appl. Phys. Lett. 63, 2027–2029 (1993).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

T. H. Yoon, J. Ye, J. L. Hall, J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm,” Appl. Phys. B 72, 221–226 (2001).
[Crossref]

Appl. Phys. Lett. (1)

H. S. Suh, T. H. Yoon, M. S. Chung, O. C. Choi, “Frequency and power stabilization of a three longitudinal mode He–Ne laser using secondary beat frequency,” Appl. Phys. Lett. 63, 2027–2029 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

J. L. Hall, L.-S. Ma, G. Kramer, “Principles of optical phase-locking: applications to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. 23, 427–437 (1987).
[Crossref]

Meas. Sci. Technol. (1)

T. Yokoyama, T. Araki, S. Yokoyama, N. Suzuki, “A sub-nanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He–Ne lasser,” Meas. Sci. Technol. 12, 157–162 (2001).
[Crossref]

Opt. Lett. (3)

Opt. Rev. (1)

T. Yasui, T. Araki, N. Suzuki, “Accurate stabilization of a 3 mW single-mode output He–Ne laser by intermittent frequency offset locking to an iodine stabilized He–Ne laser,” Opt. Rev. 4, 675–682 (1997).
[Crossref]

Rev. Sci. Instrum. (5)

P. Y. Chien, C.-L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 62, 933–935 (1991).
[Crossref]

J. Lawall, J. M. Pedulla, Y. L. Coq, “Ultrastable laser array at 633 nm for real-time dimensional metrology,” Rev. Sci. Instrum. 72, 2879–2888 (2001).
[Crossref]

I.-J. Eom, K.-C. Kim, H.-S. Suh, “Distance measurement method using the two intermode beat frequencies of a three-longitudinal mode He–Ne laser,” Rev. Sci. Instrum. 68, 4612–4614 (1997).
[Crossref]

T. Araki, S. Yokoyama, N. Suziki, “Simple optical distance meter using an intermode-beat modulation of a He–Ne laser and an electrical-heterodyne technique,” Rev. Sci. Instrum. 65, 1883–1888 (1994).
[Crossref]

S. Yokohama, T. Araki, N. Suzuki, “Frequency stabilization by frequency pulling for single-mode oscillation of He–Ne laser at maximum intensity,” Rev. Sci. Instrum. 66, 2788–2795 (1995).
[Crossref]

Other (1)

A. E. Siegman, “Oscillation frequency and frequency pulling,” in Lasers (Oxford U. Press, Oxford, UK, 1986), pp. 462–473.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Frequency relationship among three longitudinal modes of a He–Ne laser.

Fig. 2
Fig. 2

(a) Schematic diagram of thermal frequency stabilization (TFS) of a three-longitudinal-mode He–Ne laser at 633 nm. (b) Experimental setup for optical phase locking between two three-mode He–Ne lasers that employs the TFS scheme of (a) and an AOM for fast frequency compensation. LPF, low-pass filter; BPF, bandpass filter; DBM, double-balanced mixer; 0th and 1st, zeroth- and first-order diffracted beams, respectively. Other abbreviations defined in text.

Fig. 3
Fig. 3

(a) Typical tuning curve of optical beat frequency fbeat between Laser-1 and Laser-2 as a function of fsb of Laser-1 (left vertical axis), where the frequency of Laser-2 is fixed. Also shown (right vertical axis) is the variation of two-mode beat frequency ftb. (b) Frequency fluctuation of fsb at 140 kHz after the TFS circuit is closed. Inset, rf power spectrum of fsb, indicating the phase-locking status of fsb. (c) Frequency fluctuation of fbeat when both lasers are frequency stabilized by use of the same TFS method as in Fig. 1(b). Inset, Allan deviation calculated from (c).

Fig. 4
Fig. 4

(a) Frequency fluctuation of fbeat at 286.720 MHz detected by detector D3 in Fig. 2(b) after Laser-2 became a slave laser by use of only the TFS circuit for optical phase locking. (b) Frequency fluctuation of fbeat at 10 MHz detected by detector D4 in Fig. 2(b) when both the TFS circuit and a fast AOM frequency compensator were used for optical phase locking. (c) The rf power spectrum of fbeat for the optical phase-locking state as in (b), indicating tightly controlled optical phase locking.

Metrics