Abstract

A new optical fringe-counting method that entails coding interference fringes is proposed. This method features not only the implementation of reliable bidirectional optical fringe counting but also the accurate counting of oscillating optical fringes. Its main merit is the achievement of a higher phase resolution, λ/16 (λ, wavelength), as opposed to λ/8 of earlier fringe-counting methods. The robustness of fringe-code counting with regard to relative phase variations in the sine and cosine interference signals constitutes another merit of this method. The principle and realization circuit of the fringe-code-counting method are described in detail, and the experimental results with a resolution of λ/16 are presented to show the feasibility of this method.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Barone, E. Calloni, R. D. Rosa, L. D. Fiore, F. Fusco, L. Milano, G. Russo, “Fringe-counting technique used to lock a suspended interferometer,” Appl. Opt. 33, 1194–1197 (1994).
    [CrossRef] [PubMed]
  2. P. J. Fox, R. E. Scholten, M. R. Walkiewicz, R. E. Drullinger, “A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” Am. J. Phys. 67, 624–630 (1999).
    [CrossRef]
  3. P. P. Juncar, H. Elandaloussi, M. E. Himbert, J. Pinard, A. Razet, “A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter,” IEEE Trans. Instrum. Meas. 46, 690–695 (1997).
    [CrossRef]
  4. S. H. Lu, C. I. Chiueh, C. C. Lee, “Differential wavelength-scanning heterodyne interferometer for measuring large step height,” Appl. Opt. 41, 5866–5871 (2002).
    [CrossRef] [PubMed]
  5. E. R. Peck, S. W. Obetz, “Wavelength or length measurement by reversible fringe counting,” J. Opt. Soc. Am. 43, 505–509 (1953).
    [CrossRef] [PubMed]
  6. M. J. Downs, K. P. Birch, “Bi-directional fringe counting interference refractometer,” Precis. Eng. 5, 105–110 (1983).
    [CrossRef]
  7. K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12, 195–198 (1990).
    [CrossRef]
  8. S. Su, H. Lu, W. Zhou, G. Wang, “A software solution to counting and subdivision of moiré fringes with wide dynamic range,” in Process Control and Inspection for Industry, S. Zhang, W. Gao, eds., Proc. SPIE4222, 308–312 (2000).
    [CrossRef]

2002

1999

P. J. Fox, R. E. Scholten, M. R. Walkiewicz, R. E. Drullinger, “A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” Am. J. Phys. 67, 624–630 (1999).
[CrossRef]

1997

P. P. Juncar, H. Elandaloussi, M. E. Himbert, J. Pinard, A. Razet, “A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter,” IEEE Trans. Instrum. Meas. 46, 690–695 (1997).
[CrossRef]

1994

1990

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12, 195–198 (1990).
[CrossRef]

1983

M. J. Downs, K. P. Birch, “Bi-directional fringe counting interference refractometer,” Precis. Eng. 5, 105–110 (1983).
[CrossRef]

1953

Barone, F.

Birch, K. P.

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12, 195–198 (1990).
[CrossRef]

M. J. Downs, K. P. Birch, “Bi-directional fringe counting interference refractometer,” Precis. Eng. 5, 105–110 (1983).
[CrossRef]

Calloni, E.

Chiueh, C. I.

Downs, M. J.

M. J. Downs, K. P. Birch, “Bi-directional fringe counting interference refractometer,” Precis. Eng. 5, 105–110 (1983).
[CrossRef]

Drullinger, R. E.

P. J. Fox, R. E. Scholten, M. R. Walkiewicz, R. E. Drullinger, “A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” Am. J. Phys. 67, 624–630 (1999).
[CrossRef]

Elandaloussi, H.

P. P. Juncar, H. Elandaloussi, M. E. Himbert, J. Pinard, A. Razet, “A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter,” IEEE Trans. Instrum. Meas. 46, 690–695 (1997).
[CrossRef]

Fiore, L. D.

Fox, P. J.

P. J. Fox, R. E. Scholten, M. R. Walkiewicz, R. E. Drullinger, “A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” Am. J. Phys. 67, 624–630 (1999).
[CrossRef]

Fusco, F.

Himbert, M. E.

P. P. Juncar, H. Elandaloussi, M. E. Himbert, J. Pinard, A. Razet, “A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter,” IEEE Trans. Instrum. Meas. 46, 690–695 (1997).
[CrossRef]

Juncar, P. P.

P. P. Juncar, H. Elandaloussi, M. E. Himbert, J. Pinard, A. Razet, “A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter,” IEEE Trans. Instrum. Meas. 46, 690–695 (1997).
[CrossRef]

Lee, C. C.

Lu, H.

S. Su, H. Lu, W. Zhou, G. Wang, “A software solution to counting and subdivision of moiré fringes with wide dynamic range,” in Process Control and Inspection for Industry, S. Zhang, W. Gao, eds., Proc. SPIE4222, 308–312 (2000).
[CrossRef]

Lu, S. H.

Milano, L.

Obetz, S. W.

Peck, E. R.

Pinard, J.

P. P. Juncar, H. Elandaloussi, M. E. Himbert, J. Pinard, A. Razet, “A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter,” IEEE Trans. Instrum. Meas. 46, 690–695 (1997).
[CrossRef]

Razet, A.

P. P. Juncar, H. Elandaloussi, M. E. Himbert, J. Pinard, A. Razet, “A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter,” IEEE Trans. Instrum. Meas. 46, 690–695 (1997).
[CrossRef]

Rosa, R. D.

Russo, G.

Scholten, R. E.

P. J. Fox, R. E. Scholten, M. R. Walkiewicz, R. E. Drullinger, “A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” Am. J. Phys. 67, 624–630 (1999).
[CrossRef]

Su, S.

S. Su, H. Lu, W. Zhou, G. Wang, “A software solution to counting and subdivision of moiré fringes with wide dynamic range,” in Process Control and Inspection for Industry, S. Zhang, W. Gao, eds., Proc. SPIE4222, 308–312 (2000).
[CrossRef]

Walkiewicz, M. R.

P. J. Fox, R. E. Scholten, M. R. Walkiewicz, R. E. Drullinger, “A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” Am. J. Phys. 67, 624–630 (1999).
[CrossRef]

Wang, G.

S. Su, H. Lu, W. Zhou, G. Wang, “A software solution to counting and subdivision of moiré fringes with wide dynamic range,” in Process Control and Inspection for Industry, S. Zhang, W. Gao, eds., Proc. SPIE4222, 308–312 (2000).
[CrossRef]

Zhou, W.

S. Su, H. Lu, W. Zhou, G. Wang, “A software solution to counting and subdivision of moiré fringes with wide dynamic range,” in Process Control and Inspection for Industry, S. Zhang, W. Gao, eds., Proc. SPIE4222, 308–312 (2000).
[CrossRef]

Am. J. Phys.

P. J. Fox, R. E. Scholten, M. R. Walkiewicz, R. E. Drullinger, “A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” Am. J. Phys. 67, 624–630 (1999).
[CrossRef]

Appl. Opt.

IEEE Trans. Instrum. Meas.

P. P. Juncar, H. Elandaloussi, M. E. Himbert, J. Pinard, A. Razet, “A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter,” IEEE Trans. Instrum. Meas. 46, 690–695 (1997).
[CrossRef]

J. Opt. Soc. Am.

Precis. Eng.

M. J. Downs, K. P. Birch, “Bi-directional fringe counting interference refractometer,” Precis. Eng. 5, 105–110 (1983).
[CrossRef]

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12, 195–198 (1990).
[CrossRef]

Other

S. Su, H. Lu, W. Zhou, G. Wang, “A software solution to counting and subdivision of moiré fringes with wide dynamic range,” in Process Control and Inspection for Industry, S. Zhang, W. Gao, eds., Proc. SPIE4222, 308–312 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Interference signals and (b), (c), (d) their square waves for counting.

Fig. 2
Fig. 2

(a) Interference signals and (b), (c) their square waves when the measured object is vibrated.

Fig. 3
Fig. 3

Construction of the comparators’ circuit.

Fig. 4
Fig. 4

Interference signals and their coding when the measured object moves forward: (a) sine, cosine, and −sine interference signals; (b) X(3) = cos − 0; (c) X(2) = sin − cos; (d) X(1) = −sin − cos; (e) X(0) = sin − 0.

Fig. 5
Fig. 5

Interference signals and their coding when the measured object moves backward: (a) sine, cosine, and −sine interference signals; (b) X(3) = cos − 0; (c) X(2) = sin − cos; (d) X(1) = −sin − cos; (e) X(0) = sin − 0.

Fig. 6
Fig. 6

(a) Displacement curve; (b) interference signals and their coding when the measured object oscillates; (c) X(3) = cos − 0; (d) X(2) = sin − cos; (e) X(1) = −sin − cos; (f) X(0) = sin − 0.

Fig. 7
Fig. 7

Interference signals and their coding when the phase differences between sine and cosine interference signals are (a) π/4 and (b) 3π/4, respectively.

Fig. 8
Fig. 8

Block diagram of the realization of the fringe-code-counting method: DB, data bus; AB, address bus; CB, control bus; PC, personal computer.

Fig. 9
Fig. 9

Schematic of the realization circuit of the fringe-code-counting method.

Fig. 10
Fig. 10

Schematic diagram of the experimental setup: RM, reference mirror; BS’s, beam splitters; other definitions provided in the text.

Fig. 11
Fig. 11

Experimental results of the forward motion of the MM. (a) Upper, sine interference signal; middle, cosine interference signal; and lower, driving voltage for the PZT. (b) Counting value versus MM displacement.

Fig. 12
Fig. 12

Experimental results of the backward motion of the MM. (a) Upper, sine interference signal; middle, cosine interference signal; and lower, driving voltage for the PZT. (b) Counting value versus MM displacement.

Fig. 13
Fig. 13

Experimental results of the oscillation of the MM. (a) Upper, sine interference signal; middle, cosine interference signal; and lower, driving voltage for the PZT. (b) Counting value versus MM displacement.

Tables (1)

Tables Icon

Table 1 Value of X and Its Change Sequence when the Object Moves Forward or Backward

Metrics