Abstract

We have measured the stability of a variety of photodiodes exposed to 157-nm light from a pulsed excimer laser by using a radiometry beamline at the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The intense, pulsed laser light exposed the photodiodes, whereas the low-intensity, continuously tunable light from the synchrotron source measured changes in the characteristics of the photodiodes, such as in the responsivity and the reflectance from the surface of a photodiode. Photodiodes studied include both silicon pn-junction and Schottky-barrier types. Among these photodiodes, we found that the damage mechanism for photodiodes with SiO2-based passivating layers is mainly the buildup of SiO2–Si interface trap states. The interface trap state buildup is well known for other semiconductor devices and is generally recognized as a product induced by radiation with an energy more than the 9-eV SiO2 bandgap energy rather than the 7.9-eV energy of the 157-nm radiation. Based on the generation of interface trap states, a model is proposed to describe the dependence of detector responsivity on exposure to 157-nm radiation. We also observed slow recovery in some of the damaged photodiodes, confirming that some of the interface trap states are only semipermanent. Radiation damage induced by low-power continuous 157-nm synchrotron light was also studied. As for the other photodiodes with no SiO2 layers, measurement results support the assumption that the changes in responsivity are due mainly to the deposition of thin layers on the tops of the detectors during laser irradiation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Korde, J. Geist, “Quantum efficiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
    [CrossRef] [PubMed]
  2. L. R. Canfield, J. Kerner, R. Korde, “Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet,” Appl. Opt. 28, 3940–3943 (1989).
    [CrossRef] [PubMed]
  3. R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
    [CrossRef]
  4. K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
    [CrossRef]
  5. R. Goebel, R. Köhler, R. Pello, “Some effects of low-power ultraviolet radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995/1996).
    [CrossRef]
  6. L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
    [CrossRef]
  7. P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
    [CrossRef]
  8. L. Werner, “Ultraviolet stability of silicon photodiodes,” Metrologia 35, 407–411 (1998).
    [CrossRef]
  9. P. S. Shaw, K. R. Lykke, R. Gupta, T. R. O’Brian, U. Arp, H. H. White, T. B. Lucatorto, J. L. Dehmer, A. C. Parr, “Ultraviolet radiometry with synchrotron radiation and cryogenic radiometry,” Appl. Opt. 38, 18–28 (1999).
    [CrossRef]
  10. R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).
    [CrossRef]
  11. P. S. Shaw, T. C. Larason, R. Gupta, K. R. Lykke, “Characterization of UV detectors at SURF III,” Rev. Sci. Instrum. 73, 1625–1628 (2002).
    [CrossRef]
  12. M. Richter, U. Kroth, A. Gottwald, C. Gerth, K. Tiedtke, T. Saito, I. Tassy, K. Vogler, “Metrology of pulsed radiation for 157-nm lithography,” Appl. Opt. 41, 7167–7172 (2002).
    [CrossRef] [PubMed]
  13. R. Korde, C. Prince, D. Cunningham, R. E. Vest, E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
    [CrossRef]
  14. F. Scholze, R. Klein, T. Bock, “Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation,” Appl. Opt. 42, 5621–5626 (2003).
    [CrossRef] [PubMed]
  15. T. Kübarsepp, P. Kärhä, E. Ikonen, “Interpolation of the spectral responsivity of silicon photodetectors in the near ultraviolet,” Appl. Opt. 39, 9–15 (2000).
    [CrossRef]
  16. T. P. Ma, P. V. Dressendorfer, Ionization Radiation Effects in MOS Devices and Circuits (Wiley, New York, 1989).
  17. T. Saito, K. Katori, M. Nishi, H. Onuki, “Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region,” Rev. Sci. Instrum. 60, 2303–2306 (1989).
    [CrossRef]
  18. P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
    [CrossRef]
  19. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  21. E. H. Snow, A. S. Grove, D. J. Fitzgerald, “Effects of ionizing radiation on oxidized silicon surfaces and planar devices,” Proc. IEEE 55, 1168–1185 (1967).
    [CrossRef]
  22. H. L. Hughes, “Radiation-induced perturbation of the electrical properties of the silicon–silicon dioxide interface,” IEEE Trans. Nucl. Sci. NS-16, 195–202 (1969).
    [CrossRef]
  23. C. M. Dozier, D. B. Brown, J. L. Throckmorton, D. I. Ma, “Defect production in SiO2 by x-ray and CO-60 radiations,” IEEE Trans. Nucl. Sci. NS-32, 4363–4368 (1985).
    [CrossRef]
  24. F. J. Grunthaner, P. J. Grunthaner, J. Maserjian, “Radiation induced defects in SiO2 as determined with XPS,” IEEE Trans. Nucl. Sci. NS-29, 1462–1466 (1982).
    [CrossRef]

2003 (2)

R. Korde, C. Prince, D. Cunningham, R. E. Vest, E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

F. Scholze, R. Klein, T. Bock, “Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation,” Appl. Opt. 42, 5621–5626 (2003).
[CrossRef] [PubMed]

2002 (2)

P. S. Shaw, T. C. Larason, R. Gupta, K. R. Lykke, “Characterization of UV detectors at SURF III,” Rev. Sci. Instrum. 73, 1625–1628 (2002).
[CrossRef]

M. Richter, U. Kroth, A. Gottwald, C. Gerth, K. Tiedtke, T. Saito, I. Tassy, K. Vogler, “Metrology of pulsed radiation for 157-nm lithography,” Appl. Opt. 41, 7167–7172 (2002).
[CrossRef] [PubMed]

2001 (1)

P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (3)

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

L. Werner, “Ultraviolet stability of silicon photodiodes,” Metrologia 35, 407–411 (1998).
[CrossRef]

1996 (1)

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

1993 (1)

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

1989 (2)

L. R. Canfield, J. Kerner, R. Korde, “Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet,” Appl. Opt. 28, 3940–3943 (1989).
[CrossRef] [PubMed]

T. Saito, K. Katori, M. Nishi, H. Onuki, “Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region,” Rev. Sci. Instrum. 60, 2303–2306 (1989).
[CrossRef]

1987 (1)

1985 (1)

C. M. Dozier, D. B. Brown, J. L. Throckmorton, D. I. Ma, “Defect production in SiO2 by x-ray and CO-60 radiations,” IEEE Trans. Nucl. Sci. NS-32, 4363–4368 (1985).
[CrossRef]

1982 (1)

F. J. Grunthaner, P. J. Grunthaner, J. Maserjian, “Radiation induced defects in SiO2 as determined with XPS,” IEEE Trans. Nucl. Sci. NS-29, 1462–1466 (1982).
[CrossRef]

1969 (1)

H. L. Hughes, “Radiation-induced perturbation of the electrical properties of the silicon–silicon dioxide interface,” IEEE Trans. Nucl. Sci. NS-16, 195–202 (1969).
[CrossRef]

1967 (1)

E. H. Snow, A. S. Grove, D. J. Fitzgerald, “Effects of ionizing radiation on oxidized silicon surfaces and planar devices,” Proc. IEEE 55, 1168–1185 (1967).
[CrossRef]

Arp, U.

Bock, T.

Brown, D. B.

C. M. Dozier, D. B. Brown, J. L. Throckmorton, D. I. Ma, “Defect production in SiO2 by x-ray and CO-60 radiations,” IEEE Trans. Nucl. Sci. NS-32, 4363–4368 (1985).
[CrossRef]

Brown, S. W.

P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
[CrossRef]

Cable, J. S.

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

Canfield, L. R.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

L. R. Canfield, J. Kerner, R. Korde, “Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet,” Appl. Opt. 28, 3940–3943 (1989).
[CrossRef] [PubMed]

Cunningham, D.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Dehmer, J. L.

P. S. Shaw, K. R. Lykke, R. Gupta, T. R. O’Brian, U. Arp, H. H. White, T. B. Lucatorto, J. L. Dehmer, A. C. Parr, “Ultraviolet radiometry with synchrotron radiation and cryogenic radiometry,” Appl. Opt. 38, 18–28 (1999).
[CrossRef]

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).
[CrossRef]

Desor, R.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Dozier, C. M.

C. M. Dozier, D. B. Brown, J. L. Throckmorton, D. I. Ma, “Defect production in SiO2 by x-ray and CO-60 radiations,” IEEE Trans. Nucl. Sci. NS-32, 4363–4368 (1985).
[CrossRef]

Dressendorfer, P. V.

T. P. Ma, P. V. Dressendorfer, Ionization Radiation Effects in MOS Devices and Circuits (Wiley, New York, 1989).

Fitzgerald, D. J.

E. H. Snow, A. S. Grove, D. J. Fitzgerald, “Effects of ionizing radiation on oxidized silicon surfaces and planar devices,” Proc. IEEE 55, 1168–1185 (1967).
[CrossRef]

Geist, J.

Gerth, C.

Goebel, R.

R. Goebel, R. Köhler, R. Pello, “Some effects of low-power ultraviolet radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995/1996).
[CrossRef]

Gottwald, A.

Grove, A. S.

E. H. Snow, A. S. Grove, D. J. Fitzgerald, “Effects of ionizing radiation on oxidized silicon surfaces and planar devices,” Proc. IEEE 55, 1168–1185 (1967).
[CrossRef]

Grunthaner, F. J.

F. J. Grunthaner, P. J. Grunthaner, J. Maserjian, “Radiation induced defects in SiO2 as determined with XPS,” IEEE Trans. Nucl. Sci. NS-29, 1462–1466 (1982).
[CrossRef]

Grunthaner, P. J.

F. J. Grunthaner, P. J. Grunthaner, J. Maserjian, “Radiation induced defects in SiO2 as determined with XPS,” IEEE Trans. Nucl. Sci. NS-29, 1462–1466 (1982).
[CrossRef]

Gullikson, E.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Gupta, R.

P. S. Shaw, T. C. Larason, R. Gupta, K. R. Lykke, “Characterization of UV detectors at SURF III,” Rev. Sci. Instrum. 73, 1625–1628 (2002).
[CrossRef]

P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
[CrossRef]

P. S. Shaw, K. R. Lykke, R. Gupta, T. R. O’Brian, U. Arp, H. H. White, T. B. Lucatorto, J. L. Dehmer, A. C. Parr, “Ultraviolet radiometry with synchrotron radiation and cryogenic radiometry,” Appl. Opt. 38, 18–28 (1999).
[CrossRef]

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).
[CrossRef]

Hughes, H. L.

H. L. Hughes, “Radiation-induced perturbation of the electrical properties of the silicon–silicon dioxide interface,” IEEE Trans. Nucl. Sci. NS-16, 195–202 (1969).
[CrossRef]

Ikonen, E.

Kärhä, P.

Katori, K.

T. Saito, K. Katori, M. Nishi, H. Onuki, “Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region,” Rev. Sci. Instrum. 60, 2303–2306 (1989).
[CrossRef]

Kerner, J.

Klein, R.

Köhler, R.

R. Goebel, R. Köhler, R. Pello, “Some effects of low-power ultraviolet radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995/1996).
[CrossRef]

Korde, R.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

L. R. Canfield, J. Kerner, R. Korde, “Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet,” Appl. Opt. 28, 3940–3943 (1989).
[CrossRef] [PubMed]

R. Korde, J. Geist, “Quantum efficiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
[CrossRef] [PubMed]

Kroth, U.

M. Richter, U. Kroth, A. Gottwald, C. Gerth, K. Tiedtke, T. Saito, I. Tassy, K. Vogler, “Metrology of pulsed radiation for 157-nm lithography,” Appl. Opt. 41, 7167–7172 (2002).
[CrossRef] [PubMed]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Kübarsepp, T.

Kuschnerus, P.

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Larason, T. C.

P. S. Shaw, T. C. Larason, R. Gupta, K. R. Lykke, “Characterization of UV detectors at SURF III,” Rev. Sci. Instrum. 73, 1625–1628 (2002).
[CrossRef]

P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
[CrossRef]

Lucatorto, T. B.

Lykke, K. R.

P. S. Shaw, T. C. Larason, R. Gupta, K. R. Lykke, “Characterization of UV detectors at SURF III,” Rev. Sci. Instrum. 73, 1625–1628 (2002).
[CrossRef]

P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
[CrossRef]

P. S. Shaw, K. R. Lykke, R. Gupta, T. R. O’Brian, U. Arp, H. H. White, T. B. Lucatorto, J. L. Dehmer, A. C. Parr, “Ultraviolet radiometry with synchrotron radiation and cryogenic radiometry,” Appl. Opt. 38, 18–28 (1999).
[CrossRef]

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).
[CrossRef]

Ma, D. I.

C. M. Dozier, D. B. Brown, J. L. Throckmorton, D. I. Ma, “Defect production in SiO2 by x-ray and CO-60 radiations,” IEEE Trans. Nucl. Sci. NS-32, 4363–4368 (1985).
[CrossRef]

Ma, T. P.

T. P. Ma, P. V. Dressendorfer, Ionization Radiation Effects in MOS Devices and Circuits (Wiley, New York, 1989).

Maserjian, J.

F. J. Grunthaner, P. J. Grunthaner, J. Maserjian, “Radiation induced defects in SiO2 as determined with XPS,” IEEE Trans. Nucl. Sci. NS-29, 1462–1466 (1982).
[CrossRef]

Melchior, H.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Nishi, M.

T. Saito, K. Katori, M. Nishi, H. Onuki, “Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region,” Rev. Sci. Instrum. 60, 2303–2306 (1989).
[CrossRef]

O’Brian, T. R.

Onuki, H.

T. Saito, K. Katori, M. Nishi, H. Onuki, “Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region,” Rev. Sci. Instrum. 60, 2303–2306 (1989).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Parr, A. C.

Pello, R.

R. Goebel, R. Köhler, R. Pello, “Some effects of low-power ultraviolet radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995/1996).
[CrossRef]

Persch, V.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Prince, C.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Rabus, H.

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Richter, M.

M. Richter, U. Kroth, A. Gottwald, C. Gerth, K. Tiedtke, T. Saito, I. Tassy, K. Vogler, “Metrology of pulsed radiation for 157-nm lithography,” Appl. Opt. 41, 7167–7172 (2002).
[CrossRef] [PubMed]

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Saito, T.

M. Richter, U. Kroth, A. Gottwald, C. Gerth, K. Tiedtke, T. Saito, I. Tassy, K. Vogler, “Metrology of pulsed radiation for 157-nm lithography,” Appl. Opt. 41, 7167–7172 (2002).
[CrossRef] [PubMed]

T. Saito, K. Katori, M. Nishi, H. Onuki, “Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region,” Rev. Sci. Instrum. 60, 2303–2306 (1989).
[CrossRef]

Schmidtke, H.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Scholze, F.

F. Scholze, R. Klein, T. Bock, “Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation,” Appl. Opt. 42, 5621–5626 (2003).
[CrossRef] [PubMed]

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

Shaw, P. S.

P. S. Shaw, T. C. Larason, R. Gupta, K. R. Lykke, “Characterization of UV detectors at SURF III,” Rev. Sci. Instrum. 73, 1625–1628 (2002).
[CrossRef]

P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
[CrossRef]

P. S. Shaw, K. R. Lykke, R. Gupta, T. R. O’Brian, U. Arp, H. H. White, T. B. Lucatorto, J. L. Dehmer, A. C. Parr, “Ultraviolet radiometry with synchrotron radiation and cryogenic radiometry,” Appl. Opt. 38, 18–28 (1999).
[CrossRef]

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).
[CrossRef]

Snow, E. H.

E. H. Snow, A. S. Grove, D. J. Fitzgerald, “Effects of ionizing radiation on oxidized silicon surfaces and planar devices,” Proc. IEEE 55, 1168–1185 (1967).
[CrossRef]

Solt, K.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Tassy, I.

Throckmorton, J. L.

C. M. Dozier, D. B. Brown, J. L. Throckmorton, D. I. Ma, “Defect production in SiO2 by x-ray and CO-60 radiations,” IEEE Trans. Nucl. Sci. NS-32, 4363–4368 (1985).
[CrossRef]

Tiedtke, K.

Ulm, G.

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Vest, R. E.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
[CrossRef]

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Vogler, K.

Werner, L.

L. Werner, “Ultraviolet stability of silicon photodiodes,” Metrologia 35, 407–411 (1998).
[CrossRef]

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

White, H. H.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250-nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

IEEE Trans. Nucl. Sci. (4)

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

H. L. Hughes, “Radiation-induced perturbation of the electrical properties of the silicon–silicon dioxide interface,” IEEE Trans. Nucl. Sci. NS-16, 195–202 (1969).
[CrossRef]

C. M. Dozier, D. B. Brown, J. L. Throckmorton, D. I. Ma, “Defect production in SiO2 by x-ray and CO-60 radiations,” IEEE Trans. Nucl. Sci. NS-32, 4363–4368 (1985).
[CrossRef]

F. J. Grunthaner, P. J. Grunthaner, J. Maserjian, “Radiation induced defects in SiO2 as determined with XPS,” IEEE Trans. Nucl. Sci. NS-29, 1462–1466 (1982).
[CrossRef]

Metrologia (5)

R. Goebel, R. Köhler, R. Pello, “Some effects of low-power ultraviolet radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995/1996).
[CrossRef]

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

L. Werner, “Ultraviolet stability of silicon photodiodes,” Metrologia 35, 407–411 (1998).
[CrossRef]

R. Korde, C. Prince, D. Cunningham, R. E. Vest, E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Proc. IEEE (1)

E. H. Snow, A. S. Grove, D. J. Fitzgerald, “Effects of ionizing radiation on oxidized silicon surfaces and planar devices,” Proc. IEEE 55, 1168–1185 (1967).
[CrossRef]

Rev. Sci. Instrum. (3)

P. S. Shaw, T. C. Larason, R. Gupta, K. R. Lykke, “Characterization of UV detectors at SURF III,” Rev. Sci. Instrum. 73, 1625–1628 (2002).
[CrossRef]

T. Saito, K. Katori, M. Nishi, H. Onuki, “Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region,” Rev. Sci. Instrum. 60, 2303–2306 (1989).
[CrossRef]

P. S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, R. E. Vest, K. R. Lykke, “The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet Radiation Facility III,” Rev. Sci. Instrum. 72, 2242–2247 (2001).
[CrossRef]

Other (4)

Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

T. P. Ma, P. V. Dressendorfer, Ionization Radiation Effects in MOS Devices and Circuits (Wiley, New York, 1989).

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup used to study the stability of photodetectors exposed to 157-nm excimer-laser pulses. Monochromatic synchrotron radiation from the SURF III was used to measure changes in the spectral responses of photodetectors.

Fig. 2
Fig. 2

Spatial response map of a S1337 photodiode at 200 nm after exposure to 157-nm radiation.

Fig. 3
Fig. 3

Relative spectral responsivity at 157 nm of photodiodes as a function of the 157-nm radiant exposure.

Fig. 4
Fig. 4

Measured absolute spectral responsivity of pristine Hamamatsu S1337 and S5227 photodiodes and of IRD AXUV-100G and UVG-100 photodiodes.

Fig. 5
Fig. 5

Comparison of the relative spectral responsivities of photodiodes after irradiation with a 157-nm laser beam and those of photodiodes before irradiation. The photodiodes were S1337 with a radiant exposure of 0.8 J/cm2, S5227 with a radiant exposure of 8 J/cm2, AXUV-100G with a radiant exposure of 14 J/cm2, and UVG-100 with a radiant exposure of 48 J/cm2.

Fig. 6
Fig. 6

Relative spectral responsivity of an S1337 photodiode after 157-nm laser beam exposure to an unexposed photodiode compared with the penetration depth of optical radiation in silicon derived from the data of Ref. 21.

Fig. 7
Fig. 7

Spectral reflectance of an S1337 photodiode exposed to the 157-nm laser beam and the difference in reflectance relative to that of an unexposed photodiode measured at an incidence angle of 10°.

Fig. 8
Fig. 8

Relative spectral responsivity at 157 nm of S5227, S1337, AXUV-100G, and UVG-100 photodiodes as functions of the 157-nm radiant exposure. Solid curves are fitted curves (see text).

Fig. 9
Fig. 9

Spectral responsivity of a S1337 photodiode measured before, immediately after, and 6 months after exposure to 0.8 J/cm2 of 157-nm laser radiation.

Fig. 10
Fig. 10

Relative spectral responsivity at 157 nm of silicon photodiodes with PtSi and HfSi passivating layers, and GaP and GaAsP photodiodes as functions of 157-nm radiant exposure.

Fig. 11
Fig. 11

Relative spectral responsivity of photodiodes after 157-nm laser beam exposure to unexposed photodiodes. The photodiodes are a Si photodiode with a PtSi passivating layer with a radiant exposure of 560 J/cm2; a Si photodiode with a HfSi passivating layer with a radiant exposure of 1100 J/cm2; a GaP detector with a radiant exposure of 720 J/cm2; and a GaAsP detector with a radiant exposure of 470 J/cm2.

Fig. 12
Fig. 12

Relative spectral responsivity at 157 nm of a S1337 photodiode irradiated by continuous low-power (~10 μW/cm2) synchrotron radiation at 157 nm (thicker curve) compared with that of another S1337 photodiode irradiated by high-power laser pulses (average, 10 mW/cm2) at 157 nm (thinner curve). The latter is the best-fit curve to the measured data points obtained with the model discussed in the text.

Tables (1)

Tables Icon

Table 1 Photodiode Parameters Determined from Curve Fits to the Changes in Responsivity Induced by 157-nm Laser Radiation

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S ( λ ) = t ( λ ) Q ( λ ) ( λ h c q ) ,
t ( λ ) = 1 - r ( λ ) - a ( λ ) ,
S r ( λ ) S 0 ( λ ) = t r ( λ ) t 0 ( λ ) Q r ( λ ) Q 0 ( λ ) ,
I ph = I 0 - I s ,
I ph = I 0 ( 1 - α N it ) ,
Q r = Q 0 ( 1 - α N it ) .
N it = K γ n ,
d N it ( γ ) d γ = k [ N 0 - N it ( γ ) ] ,
N it ( γ ) = N 0 [ 1 - exp ( - k γ ) ] ,
Q r Q 0 = ( 1 - α N 0 ) + α N 0 exp ( - k γ ) .
S r ( γ ) S 0 = [ ( 1 - α N 0 ) + α N 0 exp ( - k γ ) ] [ t r ( γ ) t 0 ] ,
S ( γ ) S 0 = [ ( 1 - β ) + β exp ( - k γ ) ] exp ( - σ γ ) ,

Metrics