Abstract

We propose a dual-parameter optical sensor device achieved by UV inscription of a hybrid long-period grating–fiber Bragg grating structure in D fiber. The hybrid configuration permits the detection of the temperature from the latter’s response and measurement of the external refractive index from the former’s response. In addition, the host D fiber permits effective modification of the device’s sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating its potential capability to detect concentration changes as small as 0.01%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [Crossref] [PubMed]
  2. L. Zhang, W. Zhang, I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, F. T. S. Yu, S. Yin, eds. (Marcel Dekker, New York, 2002), pp. 123–181.
  3. S. E. Kanellopoulos, V. A. Handerek, A. J. Rogers, “Simultaneous strain and temperature sensing with photogenerated in-fiber gratings,” Opt. Lett. 20, 333–335 (1995).
    [Crossref] [PubMed]
  4. J. N. Jang, S. Y. Kim, S. W. Kim, M. S. Kim, “Temperature insensitive long-period fiber gratings,” Electron. Lett. 35, 2134–2136 (1999).
    [Crossref]
  5. M. N. Ng, Z. H. Chen, K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
    [Crossref]
  6. H. J. Patrick, A. D. Kersey, F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1611 (1998).
    [Crossref]
  7. X. W. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26, 774–776 (2001).
    [Crossref]
  8. K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
    [Crossref]
  9. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1999).

2002 (1)

M. N. Ng, Z. H. Chen, K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

2001 (1)

2000 (1)

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[Crossref]

1999 (1)

J. N. Jang, S. Y. Kim, S. W. Kim, M. S. Kim, “Temperature insensitive long-period fiber gratings,” Electron. Lett. 35, 2134–2136 (1999).
[Crossref]

1998 (1)

1996 (1)

1995 (1)

Bennion, I.

X. W. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26, 774–776 (2001).
[Crossref]

L. Zhang, W. Zhang, I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, F. T. S. Yu, S. Yin, eds. (Marcel Dekker, New York, 2002), pp. 123–181.

Bhatia, V.

Bucholtz, F.

Chen, Z. H.

M. N. Ng, Z. H. Chen, K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

Chiang, K. S.

M. N. Ng, Z. H. Chen, K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[Crossref]

Dong, X.

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[Crossref]

Gwandu, B. A. L.

Handerek, V. A.

Jang, J. N.

J. N. Jang, S. Y. Kim, S. W. Kim, M. S. Kim, “Temperature insensitive long-period fiber gratings,” Electron. Lett. 35, 2134–2136 (1999).
[Crossref]

Kanellopoulos, S. E.

Kersey, A. D.

Kim, M. S.

J. N. Jang, S. Y. Kim, S. W. Kim, M. S. Kim, “Temperature insensitive long-period fiber gratings,” Electron. Lett. 35, 2134–2136 (1999).
[Crossref]

Kim, S. W.

J. N. Jang, S. Y. Kim, S. W. Kim, M. S. Kim, “Temperature insensitive long-period fiber gratings,” Electron. Lett. 35, 2134–2136 (1999).
[Crossref]

Kim, S. Y.

J. N. Jang, S. Y. Kim, S. W. Kim, M. S. Kim, “Temperature insensitive long-period fiber gratings,” Electron. Lett. 35, 2134–2136 (1999).
[Crossref]

Liu, Y.

X. W. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26, 774–776 (2001).
[Crossref]

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[Crossref]

Ng, M. N.

M. N. Ng, Z. H. Chen, K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[Crossref]

Patrick, H. J.

Rogers, A. J.

Shu, X. W.

Vengsarkar, A. M.

Zhang, L.

X. W. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26, 774–776 (2001).
[Crossref]

L. Zhang, W. Zhang, I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, F. T. S. Yu, S. Yin, eds. (Marcel Dekker, New York, 2002), pp. 123–181.

Zhang, W.

L. Zhang, W. Zhang, I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, F. T. S. Yu, S. Yin, eds. (Marcel Dekker, New York, 2002), pp. 123–181.

Electron. Lett. (2)

J. N. Jang, S. Y. Kim, S. W. Kim, M. S. Kim, “Temperature insensitive long-period fiber gratings,” Electron. Lett. 35, 2134–2136 (1999).
[Crossref]

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. N. Ng, Z. H. Chen, K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

J. Lightwave Technol. (1)

Opt. Lett. (3)

Other (2)

L. Zhang, W. Zhang, I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, F. T. S. Yu, S. Yin, eds. (Marcel Dekker, New York, 2002), pp. 123–181.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross-sectional profile of a D fiber; (b) schematic diagram of a hybrid LPG–FBG structure; (c) typical transmission spectra of a hybrid LPG–FBG structure in a D fiber. Note that there are two sets of LPG resonances that correspond to the two sets of orthogonally polarized (P1 and P2) modes and that the narrow transmission loss peak is the Bragg response.

Fig. 2
Fig. 2

(a) Etching rates of the cladding (filled circles, round side; open circles, flat side). (b) HF etching-induced wavelength shifts of three resonances of the LPG (open symbols) and one of the FBG (filled symbols).

Fig. 3
Fig. 3

(a) Transmission spectra of the etched LPG–FBG measured at 10 °C and 60 °C. (b) Wavelength shift versus temperature for unetched (open symbols) and etched (filled symbols) LPG–FBG devices.

Fig. 4
Fig. 4

(a) Calibration plot of refractive index versus concentration of a sugar solution. (b) Wavelength shifts of the FBG resonance (superimposed open and filled triangles) and of the resonances of two LPGs: those of an unetched hybrid device (open circles) and of an etched hybrid device (filled circles).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n co eff Λ B ,
λ LP = ( n co eff - n cl , m eff ) Λ LP ,
Δ λ B λ B = ( 1 n n T + 1 Λ B Λ B T ) Δ T + ( 1 n n n ex + 1 Λ B Λ B n ex ) Δ n ex = A Δ T + B Δ n ex ,
Δ λ LP λ LP = [ 1 n co eff - n cl , m eff ( n co eff - n cl , m eff ) T + 1 Λ LP Λ LP T ] Δ T + [ 1 n co eff - n cl , m eff ( n co eff - n cl , m eff ) n ex + 1 Λ LP Λ LP n ex ] Δ n ex = C Δ T + D Δ n ex ,
( Δ λ B Δ λ LP ) = [ A 0 C D ] ( Δ T Δ n ex ) .
( Δ T Δ n ex ) = [ A 0 C D ] - 1 ( Δ λ B Δ λ LP ) .
( Δ T Δ n ex ) = [ 11.3 pm / ° C 0 48.1 pm / ° C - 3.8 nm / 0.07 ] - 1 × ( Δ λ B Δ λ LP 1 P 1 ) ,
( Δ T Δ n ex ) = [ 11.3 pm / ° C 0 48.1 pm / ° C - 6.6 nm / 0.02 ] - 1 × ( Δ λ B Δ λ LP 1 P 1 ) .

Metrics