Abstract

We propose a versatile guided-wave geometry encompassing electro-optic control for signal routing. A zero-gap directional coupler in liquid crystal can switch between two output states in the guide plane, permitting signal rerouting with modulation voltages as small as 70 mV. In the absence of an applied bias, no guiding—hence no modal output—is provided by the structure.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Papadimitriou, C. Papazoglou, A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384–405 (2003).
    [CrossRef]
  2. A. Pattavina, M. Martinelli, G. Maier, P. Boffi, “Techniques and technologies towards all-optical switching,” SPIE Opt. Network Mag. 1, 75–92 (2000).
  3. R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
    [CrossRef]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [CrossRef] [PubMed]
  5. B. Li, S. J. Chua, “Two-mode interference photonic waveguide switch,” J. Lightwave Technol. 21, 1685–1690 (2003).
    [CrossRef]
  6. L. Colace, G. Masini, G. Assanto, “Ge-on-Si approaches to the detection of near infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
    [CrossRef]
  7. R. V. Ramaswamy, R. Srivastava, “Ion-exchange glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
    [CrossRef]
  8. K. Liu, E. Y. B. Pun, “Single-mode RB+–K+ ion-exchanged BK7 glass waveguides with low losses at 1550 nm,” IEEE Photon. Technol. Lett. 16, 120–122 (2004).
    [CrossRef]
  9. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [CrossRef]
  10. T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
    [CrossRef]
  11. W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
    [CrossRef]
  12. S. Park, J. J. Ju, J. Y. Do, S. K. Park, M. H. Lee, “Thermal stability enhancement of electro-optic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
    [CrossRef]
  13. N. A. Clark, S. T. Lagerwall, “Sub-microsecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
    [CrossRef]
  14. J. Qi, H. Xianyu, J. Liang, G. P. Crawford, “Active U-turn electrooptic switch formed in patterned holographic polymer-dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
    [CrossRef]
  15. L. Lucchetti, D. Fedorenko, O. Francescangeli, Y. Reznikov, F. Simoni, “Surface reorientation induced by short light pulses in doped liquid crystals,” Opt. Lett. 28, 1621–1623 (2003).
    [CrossRef] [PubMed]
  16. M. Peccianti, G. Assanto, “Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals,” Opt. Lett. 26, 1690–1692 (2001).
    [CrossRef]
  17. A. d’Alessandro, R. Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
    [CrossRef]
  18. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).
  19. P. G. De Gennes, J. Prost, The Physics of Liquid Crystals (Oxford Science, New York, 1995).
  20. R. Asquini, A. d’Alessandro, “BPM Analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55 µm,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
    [CrossRef]
  21. L. M. Blinov, “Electro-optical effects in liquid crystals,” Sov. Phys. Usp. 17, 658–672 (1975).
    [CrossRef]
  22. M. Papuchon, A. M. Roy, D. B. Ostrowsky, “Electrically active optical bifurcation: BOA,” Appl. Phys. Lett. 31, 266–267 (1977).
    [CrossRef]
  23. F. Rottmann, A. Neyer, W. Mevenkamp, E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” J. Lightwave Technol. 6, 946–952 (1988).
    [CrossRef]
  24. C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
    [CrossRef]
  25. C. Z. Zhao, E. K. Liu, G. Z. Li, Y. Gao, C. S. Guo, “Zero-gap directional coupler switch integrated into a silicon-on insulator for 1.3-µm operation,” Opt. Lett. 21, 1664–1666 (1996).
    [CrossRef] [PubMed]
  26. A. De Rossi, G. Masini, G. Assanto, “Routing switch based on a silicon-on insulator mode-mixer,” IEEE Photon. Technol. Lett. 11, 194–196 (1999).
    [CrossRef]
  27. See, e.g., BeamBox Newsletter 1 (Akzo-Nobel, Arnhem, The Netherlands, 1997).
  28. B. Li, S. Chua, “Two-mode interference photonic waveguide switch,” J. Lightwave Technol. 21, 1685–1690 (2003).
    [CrossRef]
  29. L. Sirleto, G. Coppola, G. Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A Pure Appl. Opt. 5, S298–S304 (2003).
    [CrossRef]
  30. J. Collins, M. Hird, Introduction to Liquid Crystal Chemistry and Physics (Taylor & Francis, London, 1997).
    [CrossRef]
  31. P. Wesseling, An Introduction to Multigrid Methods (Wiley, London, 1992).
  32. Merck Industrial Chemicals Catalog (Merck House, Poole, UK, 1997).
  33. M. Warenghem, Laboratoire de Physicochimie des Interfaces et Applications, Université d’Artois-Lens, 62307 Lens Cedex, France (personal communication, 2002).
  34. D. A. Dumm, A. Fukuda, G. R. Luckhurst, Physical Properties of Liquid Crystals: Nematics (INSPEC, London, 2001).

2004 (4)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

K. Liu, E. Y. B. Pun, “Single-mode RB+–K+ ion-exchanged BK7 glass waveguides with low losses at 1550 nm,” IEEE Photon. Technol. Lett. 16, 120–122 (2004).
[CrossRef]

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, M. H. Lee, “Thermal stability enhancement of electro-optic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[CrossRef]

2003 (7)

J. Qi, H. Xianyu, J. Liang, G. P. Crawford, “Active U-turn electrooptic switch formed in patterned holographic polymer-dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

L. Lucchetti, D. Fedorenko, O. Francescangeli, Y. Reznikov, F. Simoni, “Surface reorientation induced by short light pulses in doped liquid crystals,” Opt. Lett. 28, 1621–1623 (2003).
[CrossRef] [PubMed]

A. d’Alessandro, R. Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

G. I. Papadimitriou, C. Papazoglou, A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384–405 (2003).
[CrossRef]

B. Li, S. J. Chua, “Two-mode interference photonic waveguide switch,” J. Lightwave Technol. 21, 1685–1690 (2003).
[CrossRef]

B. Li, S. Chua, “Two-mode interference photonic waveguide switch,” J. Lightwave Technol. 21, 1685–1690 (2003).
[CrossRef]

L. Sirleto, G. Coppola, G. Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

2002 (1)

R. Asquini, A. d’Alessandro, “BPM Analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55 µm,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
[CrossRef]

2001 (1)

2000 (2)

A. Pattavina, M. Martinelli, G. Maier, P. Boffi, “Techniques and technologies towards all-optical switching,” SPIE Opt. Network Mag. 1, 75–92 (2000).

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

1999 (3)

L. Colace, G. Masini, G. Assanto, “Ge-on-Si approaches to the detection of near infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[CrossRef]

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

A. De Rossi, G. Masini, G. Assanto, “Routing switch based on a silicon-on insulator mode-mixer,” IEEE Photon. Technol. Lett. 11, 194–196 (1999).
[CrossRef]

1996 (1)

1994 (1)

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

1993 (1)

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

1988 (2)

R. V. Ramaswamy, R. Srivastava, “Ion-exchange glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[CrossRef]

F. Rottmann, A. Neyer, W. Mevenkamp, E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” J. Lightwave Technol. 6, 946–952 (1988).
[CrossRef]

1980 (1)

N. A. Clark, S. T. Lagerwall, “Sub-microsecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

1977 (1)

M. Papuchon, A. M. Roy, D. B. Ostrowsky, “Electrically active optical bifurcation: BOA,” Appl. Phys. Lett. 31, 266–267 (1977).
[CrossRef]

1975 (1)

L. M. Blinov, “Electro-optical effects in liquid crystals,” Sov. Phys. Usp. 17, 658–672 (1975).
[CrossRef]

Allegretto, W.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

Asquini, R.

A. d’Alessandro, R. Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

R. Asquini, A. d’Alessandro, “BPM Analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55 µm,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
[CrossRef]

Assanto, G.

M. Peccianti, G. Assanto, “Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals,” Opt. Lett. 26, 1690–1692 (2001).
[CrossRef]

A. De Rossi, G. Masini, G. Assanto, “Routing switch based on a silicon-on insulator mode-mixer,” IEEE Photon. Technol. Lett. 11, 194–196 (1999).
[CrossRef]

L. Colace, G. Masini, G. Assanto, “Ge-on-Si approaches to the detection of near infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Bhattacharya, D.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Blinov, L. M.

L. M. Blinov, “Electro-optical effects in liquid crystals,” Sov. Phys. Usp. 17, 658–672 (1975).
[CrossRef]

Boffi, P.

A. Pattavina, M. Martinelli, G. Maier, P. Boffi, “Techniques and technologies towards all-optical switching,” SPIE Opt. Network Mag. 1, 75–92 (2000).

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Breglio, G.

L. Sirleto, G. Coppola, G. Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

Chen, A.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Chen, D.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Chua, S.

Chua, S. J.

Chuyanov, V.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Clark, N. A.

N. A. Clark, S. T. Lagerwall, “Sub-microsecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Colace, L.

L. Colace, G. Masini, G. Assanto, “Ge-on-Si approaches to the detection of near infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[CrossRef]

Collins, J.

J. Collins, M. Hird, Introduction to Liquid Crystal Chemistry and Physics (Taylor & Francis, London, 1997).
[CrossRef]

Coppola, G.

L. Sirleto, G. Coppola, G. Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

Crawford, G. P.

J. Qi, H. Xianyu, J. Liang, G. P. Crawford, “Active U-turn electrooptic switch formed in patterned holographic polymer-dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

d’Alessandro, A.

A. d’Alessandro, R. Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

R. Asquini, A. d’Alessandro, “BPM Analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55 µm,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
[CrossRef]

Dalton, L. R.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

De Gennes, P. G.

P. G. De Gennes, J. Prost, The Physics of Liquid Crystals (Oxford Science, New York, 1995).

De Rossi, A.

A. De Rossi, G. Masini, G. Assanto, “Routing switch based on a silicon-on insulator mode-mixer,” IEEE Photon. Technol. Lett. 11, 194–196 (1999).
[CrossRef]

Do, J. Y.

S. Park, J. J. Ju, J. Y. Do, S. K. Park, M. H. Lee, “Thermal stability enhancement of electro-optic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[CrossRef]

Dumm, D. A.

D. A. Dumm, A. Fukuda, G. R. Luckhurst, Physical Properties of Liquid Crystals: Nematics (INSPEC, London, 2001).

Fallahi, M.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

Fedorenko, D.

Fejer, M. M.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Fetterman, H. R.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Francescangeli, O.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Fukuda, A.

D. A. Dumm, A. Fukuda, G. R. Luckhurst, Physical Properties of Liquid Crystals: Nematics (INSPEC, London, 2001).

Gao, Y.

Garner, S.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Guo, C. S.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Harper, A.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Hillier, G.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

Hird, M.

J. Collins, M. Hird, Introduction to Liquid Crystal Chemistry and Physics (Taylor & Francis, London, 1997).
[CrossRef]

Ishii, M.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Janz, C. F.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Ju, J. J.

S. Park, J. J. Ju, J. Y. Do, S. K. Park, M. H. Lee, “Thermal stability enhancement of electro-optic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[CrossRef]

Kawanishi, S.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Keyworth, B. P.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

Khoo, I. C.

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Kitoh, T.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Kurz, J. R.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Lagerwall, S. T.

N. A. Clark, S. T. Lagerwall, “Sub-microsecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Lee, M. H.

S. Park, J. J. Ju, J. Y. Do, S. K. Park, M. H. Lee, “Thermal stability enhancement of electro-optic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[CrossRef]

Lee, S. S.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Li, B.

Li, G. Z.

Liang, J.

J. Qi, H. Xianyu, J. Liang, G. P. Crawford, “Active U-turn electrooptic switch formed in patterned holographic polymer-dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Liu, E. K.

Liu, K.

K. Liu, E. Y. B. Pun, “Single-mode RB+–K+ ion-exchanged BK7 glass waveguides with low losses at 1550 nm,” IEEE Photon. Technol. Lett. 16, 120–122 (2004).
[CrossRef]

Lucchetti, L.

Luckhurst, G. R.

D. A. Dumm, A. Fukuda, G. R. Luckhurst, Physical Properties of Liquid Crystals: Nematics (INSPEC, London, 2001).

Maack, D. R.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

MacDonald, R. I.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

Magari, K.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Maier, G.

A. Pattavina, M. Martinelli, G. Maier, P. Boffi, “Techniques and technologies towards all-optical switching,” SPIE Opt. Network Mag. 1, 75–92 (2000).

Martinelli, M.

A. Pattavina, M. Martinelli, G. Maier, P. Boffi, “Techniques and technologies towards all-optical switching,” SPIE Opt. Network Mag. 1, 75–92 (2000).

Masini, G.

A. De Rossi, G. Masini, G. Assanto, “Routing switch based on a silicon-on insulator mode-mixer,” IEEE Photon. Technol. Lett. 11, 194–196 (1999).
[CrossRef]

L. Colace, G. Masini, G. Assanto, “Ge-on-Si approaches to the detection of near infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Mevenkamp, W.

F. Rottmann, A. Neyer, W. Mevenkamp, E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” J. Lightwave Technol. 6, 946–952 (1988).
[CrossRef]

Mino, S.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Mori, K.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Neyer, A.

F. Rottmann, A. Neyer, W. Mevenkamp, E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” J. Lightwave Technol. 6, 946–952 (1988).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Ogawa, I.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Ohara, T.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Okamoto, M.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Ostrowsky, D. B.

M. Papuchon, A. M. Roy, D. B. Ostrowsky, “Electrically active optical bifurcation: BOA,” Appl. Phys. Lett. 31, 266–267 (1977).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Papadimitriou, G. I.

Papazoglou, C.

Papuchon, M.

M. Papuchon, A. M. Roy, D. B. Ostrowsky, “Electrically active optical bifurcation: BOA,” Appl. Phys. Lett. 31, 266–267 (1977).
[CrossRef]

Parameswaran, K. R.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Park, S.

S. Park, J. J. Ju, J. Y. Do, S. K. Park, M. H. Lee, “Thermal stability enhancement of electro-optic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[CrossRef]

Park, S. K.

S. Park, J. J. Ju, J. Y. Do, S. K. Park, M. H. Lee, “Thermal stability enhancement of electro-optic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[CrossRef]

Pattavina, A.

A. Pattavina, M. Martinelli, G. Maier, P. Boffi, “Techniques and technologies towards all-optical switching,” SPIE Opt. Network Mag. 1, 75–92 (2000).

Peccianti, M.

Pomportsis, A. S.

Prost, J.

P. G. De Gennes, J. Prost, The Physics of Liquid Crystals (Oxford Science, New York, 1995).

Pun, E. Y. B.

K. Liu, E. Y. B. Pun, “Single-mode RB+–K+ ion-exchanged BK7 glass waveguides with low losses at 1550 nm,” IEEE Photon. Technol. Lett. 16, 120–122 (2004).
[CrossRef]

Qi, J.

J. Qi, H. Xianyu, J. Liang, G. P. Crawford, “Active U-turn electrooptic switch formed in patterned holographic polymer-dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

Ramaswamy, R. V.

R. V. Ramaswamy, R. Srivastava, “Ion-exchange glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[CrossRef]

Ren, A. S.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Reznikov, Y.

Rolland, C.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

Rottmann, F.

F. Rottmann, A. Neyer, W. Mevenkamp, E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” J. Lightwave Technol. 6, 946–952 (1988).
[CrossRef]

Roussev, R. V.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Roy, A. M.

M. Papuchon, A. M. Roy, D. B. Ostrowsky, “Electrically active optical bifurcation: BOA,” Appl. Phys. Lett. 31, 266–267 (1977).
[CrossRef]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Sato, K.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Shake, I.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Simoni, F.

Sirleto, L.

L. Sirleto, G. Coppola, G. Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

Soref, R. A.

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

Srivastava, R.

R. V. Ramaswamy, R. Srivastava, “Ion-exchange glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[CrossRef]

Steier, W. H.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Takara, H.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Todorova, G.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Tsap, B.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Udupa, A.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Voges, E.

F. Rottmann, A. Neyer, W. Mevenkamp, E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” J. Lightwave Technol. 6, 946–952 (1988).
[CrossRef]

Wang, F.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Warenghem, M.

M. Warenghem, Laboratoire de Physicochimie des Interfaces et Applications, Université d’Artois-Lens, 62307 Lens Cedex, France (personal communication, 2002).

Wesseling, P.

P. Wesseling, An Introduction to Multigrid Methods (Wiley, London, 1992).

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Xianyu, H.

J. Qi, H. Xianyu, J. Liang, G. P. Crawford, “Active U-turn electrooptic switch formed in patterned holographic polymer-dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

Yamada, T.

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Zhang, C.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Zhang, H.

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

Zhao, C. Z.

Appl. Phys. Lett. (2)

N. A. Clark, S. T. Lagerwall, “Sub-microsecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

M. Papuchon, A. M. Roy, D. B. Ostrowsky, “Electrically active optical bifurcation: BOA,” Appl. Phys. Lett. 31, 266–267 (1977).
[CrossRef]

Chem. Phys. (1)

W. H. Steier, A. Chen, S. S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, B. Tsap, “Polymer electro-optic devices for integrated optics,” Chem. Phys. 245, 487–506 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Colace, G. Masini, G. Assanto, “Ge-on-Si approaches to the detection of near infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. R. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh, K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, M. M. Fejer, “160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
[CrossRef]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, M. H. Lee, “Thermal stability enhancement of electro-optic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[CrossRef]

J. Qi, H. Xianyu, J. Liang, G. P. Crawford, “Active U-turn electrooptic switch formed in patterned holographic polymer-dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

K. Liu, E. Y. B. Pun, “Single-mode RB+–K+ ion-exchanged BK7 glass waveguides with low losses at 1550 nm,” IEEE Photon. Technol. Lett. 16, 120–122 (2004).
[CrossRef]

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. MacDonald, M. Fallahi, G. Hillier, C. Rolland, “Mach–Zehnder switch using an ultra-compact directional coupler in a strongly confining rib structure,” IEEE Photon. Technol. Lett. 6, 981–983 (1994).
[CrossRef]

A. De Rossi, G. Masini, G. Assanto, “Routing switch based on a silicon-on insulator mode-mixer,” IEEE Photon. Technol. Lett. 11, 194–196 (1999).
[CrossRef]

J. Lightwave Technol. (5)

B. Li, S. Chua, “Two-mode interference photonic waveguide switch,” J. Lightwave Technol. 21, 1685–1690 (2003).
[CrossRef]

F. Rottmann, A. Neyer, W. Mevenkamp, E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” J. Lightwave Technol. 6, 946–952 (1988).
[CrossRef]

B. Li, S. J. Chua, “Two-mode interference photonic waveguide switch,” J. Lightwave Technol. 21, 1685–1690 (2003).
[CrossRef]

R. V. Ramaswamy, R. Srivastava, “Ion-exchange glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[CrossRef]

G. I. Papadimitriou, C. Papazoglou, A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384–405 (2003).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

L. Sirleto, G. Coppola, G. Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

A. d’Alessandro, R. Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

R. Asquini, A. d’Alessandro, “BPM Analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55 µm,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
[CrossRef]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. IEEE (1)

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

Sov. Phys. Usp. (1)

L. M. Blinov, “Electro-optical effects in liquid crystals,” Sov. Phys. Usp. 17, 658–672 (1975).
[CrossRef]

SPIE Opt. Network Mag. (1)

A. Pattavina, M. Martinelli, G. Maier, P. Boffi, “Techniques and technologies towards all-optical switching,” SPIE Opt. Network Mag. 1, 75–92 (2000).

Other (8)

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

P. G. De Gennes, J. Prost, The Physics of Liquid Crystals (Oxford Science, New York, 1995).

J. Collins, M. Hird, Introduction to Liquid Crystal Chemistry and Physics (Taylor & Francis, London, 1997).
[CrossRef]

P. Wesseling, An Introduction to Multigrid Methods (Wiley, London, 1992).

Merck Industrial Chemicals Catalog (Merck House, Poole, UK, 1997).

M. Warenghem, Laboratoire de Physicochimie des Interfaces et Applications, Université d’Artois-Lens, 62307 Lens Cedex, France (personal communication, 2002).

D. A. Dumm, A. Fukuda, G. R. Luckhurst, Physical Properties of Liquid Crystals: Nematics (INSPEC, London, 2001).

See, e.g., BeamBox Newsletter 1 (Akzo-Nobel, Arnhem, The Netherlands, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Homogeneous nematic LC cell with (a) zero and (b) nonzero applied voltage V.

Fig. 2
Fig. 2

Field distribution owing to two superimposed modes in a Y junction, with the second mode either in phase or out of phase with respect to the first-order mode.

Fig. 3
Fig. 3

(a) Side, (b) top, and (c) three-dimensional views of the nematic LC device.

Fig. 4
Fig. 4

Maximum tilt angle ϑm in the cell’s midpoint versus voltage, in a sample with LC E7.

Fig. 5
Fig. 5

Maximum LC refractive index nm in the cell midpoint versus voltage, in a sample with LC E7.

Fig. 6
Fig. 6

(a) TM00 and (b) TM01 mode profiles for a voltage Vϑm1 = 1.211 V applied to the cell, corresponding to ϑm1 = 0.527 and nϑm1 = 1.542, with LC E7. The eigenvalues are N0 = 1.510 for TM00 and N1 = 1.500 for TM01.

Fig. 7
Fig. 7

(a) TM00 and (b) TM01 mode profiles for Vϑm2 = 1.340 V, corresponding to ϑm2 = 0.653 and nϑm2 = 1.562, with LC E7. The eigenvalues are N0 = 1.523 for TM00 and N1 = 1.508 for TM01.

Fig. 8
Fig. 8

Two-dimensional index distributions for (a) Vϑm1 = 1.211 V and (b) Vϑm2 = 1.340 V, with LC E7. The maximum indices (x = y = 0) are (a) nm1 = 1.542 and (b) nm2 = 1.562.

Fig. 9
Fig. 9

Field propagation along z for L = 160 µm and (a) ϑm1 = 0.527, (b) ϑm2 = 0.653, and (c) ϑm3 = 0. Shaded areas in (a) and (b) indicate the transverse LC portion under the top electrode.

Fig. 10
Fig. 10

Output electric field versus y for biases that differ by ΔV = Vϑm2Vϑm1 = 129 mV, with (a) Vϑm1 = 1.211 V and (b) Vϑm2 = 1.340 V (with LC E7).

Fig. 11
Fig. 11

Intensity evolution in a standard symmetric Y junction (with LC E7).

Fig. 12
Fig. 12

Modal profiles for various biases with LC 5CB: (a) TM00 and (b) TM01 at V = 1.034 V; (c) TM00 and (d) TM01 at V = 1.105 V.

Fig. 13
Fig. 13

Refractive-index distributions with LC 5CB calculated for (a) V = 1.034 and (b) V = 1.105 V.

Fig. 14
Fig. 14

BPM simulation of superimposed TM00 and TM01: (a) V = 1.105 V, (b) V = 1.105 V, and (c) V = 0 V (with LC 5CB).

Fig. 15
Fig. 15

Transverse output electric fields in z = L with LC 5CB for (a) V = 1.034 V and (b) V = 1.105 V.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U = υ U d d υ = υ ( U d EL + U d EM ) d υ ,
U d EL = K 1 / 2 ( n ) 2 + K 2 / 2 ( n × n ) 2 + K 3 / 2 ( n × × n ) 2 ,
U d EM = ε ε 2 ( n E ) 2 ,
K 2 ϑ + ε 0 Δ ε | E x | 2 2 sin 2 ϑ = 0 ,
x [ ( ε cos 2 ϑ + ε sin 2 ϑ ) x V ] + ε 2 y 2 V = 0 .

Metrics