Abstract

We show experimental results for programmable polarization multiplexing of diffractive optical elements (DOEs) onto two liquid-crystal displays (LCDs). The first LCD encodes the two multiplexed phase-only diffractive optical elements. The second LCD acts as a pixelated polarization rotator to change the polarization state for each of these two DOEs. Although the system requires precise alignment, the DOE’s and polarization angles are fully programmable.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sanyal, P. Bandyopadhyay, A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599 (1998).
    [CrossRef]
  2. P. C. Mogensen, J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
    [CrossRef]
  3. F. Gori, “Measuring Stokes parameters by means of polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  4. J. E. Ford, F. Yu, K. Urquhart, Y. Fainman, “Polarization-selective computer generated holograms,” Opt. Lett. 18, 456–458 (1993).
    [CrossRef] [PubMed]
  5. A. V. Krishnamoorthy, F. Xu, J. E. Ford, Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997–1010 (1997).
    [CrossRef] [PubMed]
  6. N. Nieuborg, A. Kirk, B. Morlion, H. Thienpont, I. Veretennicoff, “Polarization selective diffractive optical elements with an index-matching gap material,” Appl. Opt. 36, 4681–4685 (1997).
    [CrossRef] [PubMed]
  7. U. D. Zeitner, B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels,” Appl. Opt. 38, 2177–2181 (1999).
    [CrossRef]
  8. W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, Y. Ichioka, “Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures,” Appl. Opt. 41, 96–100 (2002).
    [CrossRef] [PubMed]
  9. S. H. Tao, X.-C. Yuan, W. C. Cheong, J. Bu, V. Kudryashov, “Optimized polarization-selective computer-generated hologram with fewer phase combinations,” Opt. Express 11, 1252–1257 (2003).
    [CrossRef] [PubMed]
  10. J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, “Two dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
    [CrossRef]
  11. C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995).
    [CrossRef]
  12. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 6, p. 200.
  13. I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
    [CrossRef]
  14. J. A. Davis, P. S. Tsai, D. M. Cottrell, T. Sonehara, J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999).
    [CrossRef]
  15. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999).
    [CrossRef]
  16. J. A. Davis, K. O. Valadez, D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt. 42, 2003–2008 (2003).
    [CrossRef] [PubMed]
  17. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase-only structures,” J. Opt. Soc. Am. A 6, 961–969 (1990).
    [CrossRef]
  18. B. B. Chhetri, S. Yang, T. Shimonura, “Stochastic approach in the efficient design of the direct-binary-search algorithm for hologram synthesis,” Appl. Opt. 39, 5956–5964 (2000).
    [CrossRef]
  19. J. A. Davis, D. M. Cottrell, “Random mask encoding of multiplexed phase-only and binary phase-only filters,” Opt. Lett. 19, 496–498 (1994).
    [CrossRef] [PubMed]

2003 (2)

2002 (1)

2000 (3)

1999 (4)

1998 (2)

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

S. Sanyal, P. Bandyopadhyay, A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599 (1998).
[CrossRef]

1997 (2)

1995 (1)

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995).
[CrossRef]

1994 (1)

1993 (1)

1990 (1)

F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase-only structures,” J. Opt. Soc. Am. A 6, 961–969 (1990).
[CrossRef]

Allison, D. B.

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

Amako, J.

J. A. Davis, P. S. Tsai, D. M. Cottrell, T. Sonehara, J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999).
[CrossRef]

Bandyopadhyay, P.

S. Sanyal, P. Bandyopadhyay, A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599 (1998).
[CrossRef]

Bu, J.

Campos, J.

Cheong, W. C.

Chhetri, B. B.

Cottrell, D. M.

D’Nelly, K. G.

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

Davis, J. A.

Fainman, Y.

Ford, J. E.

Ghosh, A.

S. Sanyal, P. Bandyopadhyay, A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599 (1998).
[CrossRef]

Gluckstad, J.

P. C. Mogensen, J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Gori, F.

Hamamoto, T.

Ichioka, Y.

Kirk, A.

Kley, E.-B.

Konishi, T.

Krishnamoorthy, A. V.

Kudryashov, V.

McNamara, D. E.

Mogensen, P. C.

P. C. Mogensen, J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Moreno, I.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

Morlion, B.

Nieuborg, N.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 6, p. 200.

Sanyal, S.

S. Sanyal, P. Bandyopadhyay, A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599 (1998).
[CrossRef]

Schnabel, B.

Shimonura, T.

Sonehara, T.

J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, “Two dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
[CrossRef]

J. A. Davis, P. S. Tsai, D. M. Cottrell, T. Sonehara, J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999).
[CrossRef]

Tao, S. H.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 6, p. 200.

Thienpont, H.

Toyota, H.

Tsai, P. S.

J. A. Davis, P. S. Tsai, D. M. Cottrell, T. Sonehara, J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999).
[CrossRef]

Urquhart, K.

Valadez, K. O.

Veretennicoff, I.

Wyrowski, F.

U. D. Zeitner, B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels,” Appl. Opt. 38, 2177–2181 (1999).
[CrossRef]

F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase-only structures,” J. Opt. Soc. Am. A 6, 961–969 (1990).
[CrossRef]

Xu, F.

Yang, S.

Ye, C.

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995).
[CrossRef]

Yotsuya, T.

Yu, F.

Yu, W.

Yuan, X.-C.

Yzuel, M. J.

Zeitner, U. D.

Appl. Opt. (8)

A. V. Krishnamoorthy, F. Xu, J. E. Ford, Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997–1010 (1997).
[CrossRef] [PubMed]

N. Nieuborg, A. Kirk, B. Morlion, H. Thienpont, I. Veretennicoff, “Polarization selective diffractive optical elements with an index-matching gap material,” Appl. Opt. 36, 4681–4685 (1997).
[CrossRef] [PubMed]

U. D. Zeitner, B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels,” Appl. Opt. 38, 2177–2181 (1999).
[CrossRef]

W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, Y. Ichioka, “Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures,” Appl. Opt. 41, 96–100 (2002).
[CrossRef] [PubMed]

J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, “Two dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
[CrossRef]

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999).
[CrossRef]

J. A. Davis, K. O. Valadez, D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt. 42, 2003–2008 (2003).
[CrossRef] [PubMed]

B. B. Chhetri, S. Yang, T. Shimonura, “Stochastic approach in the efficient design of the direct-binary-search algorithm for hologram synthesis,” Appl. Opt. 39, 5956–5964 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase-only structures,” J. Opt. Soc. Am. A 6, 961–969 (1990).
[CrossRef]

Opt. Commun. (1)

P. C. Mogensen, J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Opt. Eng. (4)

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).
[CrossRef]

J. A. Davis, P. S. Tsai, D. M. Cottrell, T. Sonehara, J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999).
[CrossRef]

S. Sanyal, P. Bandyopadhyay, A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 6, p. 200.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical rotator system consisting of two quarter-wave plates (QWPs) and a variable wave plate (a parallel-aligned LCD) with principal axes as shown. The arrows denote the directions of the principal axes of the wave plates. The rotation angle is ϕ/2, where ϕ is the phase shift introduced by the parallel-aligned LCD.

Fig. 2
Fig. 2

Cascaded optical system. The first system generates the phase-only operation while the second system acts as the polarizer rotator system. The arrows denote the directions of the linear polarizer transmission axes, the principal axes of the wave plates, and the input director axes for the LCDs. LCD1 is a twisted nematic LCD, and LCD2 is a parallel-aligned LCD.

Fig. 3
Fig. 3

Schematic showing the formation of the two patterns applied to the two LCDs: (a) input letter L; (b) input letter V; (c) phase of the FFT of letter L; (d) phase of the FFT of letter V; (e) multiplexing of pattern (c) onto the left half of the screen and pattern (d) onto the right half of the screen for LCD1; (f) pattern encoded onto LCD2, showing different phase levels applied to each half screen.

Fig. 4
Fig. 4

Output pattern using binary phase-only DOEs when the analyzer polarizer is (a) at 45°, (b) at 0°, and (c) at 90°.

Fig. 5
Fig. 5

Output pattern using ternary phase DOEs when the analyzer polarizer is (a) at 45°, (b) at 0°, and (c) at 90°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M = R ( 45 ) W λ / 4 R ( + 45 ) W ( ϕ ) R ( + 45 ) W λ / 4 R ( 45 ) ,
W λ / 4 = [ 1 0 0 i ] ,
R ( θ ) = [ cos θ sin θ sin θ cos θ ] .
W ( ϕ ) = [ 1 0 0 exp ( i ϕ ) ] .
R ( ϕ / 2 ) = i exp ( i ϕ 2 ) [ cos ( ϕ / 2 ) sin ( ϕ / 2 ) sin ( ϕ / 2 ) cos ( ϕ / 2 ) ] .

Metrics