Abstract

We present imaging results in human retinal tissue in vivo that allowed us to determine the axial resolution of the adaptive optics scanning laser ophthalmoscope (AOSLO). The instrument is briefly described, and the imaging results from human subjects are compared with (a) the estimated axial resolution values for a diffraction-limited, double-pass instrument and (b) the measured one for a calibrated diffuse retinal model. The comparison showed that the measured axial resolution, as obtained from optical sectioning of human retinas in vivo, can be as low as 71 µm for a 50 µm confocal pinhole after focusing a 3.5 mm beam with a 100 mm focal-length lens. The axial resolution values typically fall between the predictions from numerical models for diffuse and specular reflectors. This suggests that the reflection from the retinal blood vessel combines diffuse and specular components. This conclusion is supported by the almost universal interpretation that the image of a cylindrical blood vessel exhibits a bright reflection along its apex that is considered specular. The enhanced axial resolution achieved through use of adaptive optics leads to an improvement in the volume resolution of almost 2 orders of magnitude when compared with a conventional scanning laser ophthalmoscope and almost a factor of 3 better than commercially available optical coherence tomographic instruments.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Mainster, G. T. Timberlake, R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89, 852–857 (1982).
    [CrossRef] [PubMed]
  2. F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).
  3. D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
    [PubMed]
  4. W. N. Wykes, A. A. Pyott, V. G. Ferguson, “Detection of diabetic retinopathy by scanning laser ophthalmoscopy,” Eye 8, 437–439 (1994).
    [CrossRef] [PubMed]
  5. S. Asrani, R. Zeimer, M. F. Goldberg, S. Zou, “Serial optical sectioning of macular holes at different stages of development,” Ophthalmology 105, 66–77 (1998).
    [CrossRef] [PubMed]
  6. D. van Norren, J. van de Kraats, “Imaging retinal densi-tometry with a confocal scanning laser ophthalmoscope,” Vision Res. 29, 1825–1830 (1989).
    [CrossRef]
  7. F. W. Fitzke, B. R. Masters, “Three-dimensional visualization of confocal sections of in vivo human fundus and optic nerve,” Curr. Eye Res. 12, 1015–1018 (1993).
    [CrossRef] [PubMed]
  8. F. W. Fitzke, “Imaging the optic nerve and ganglion cell layer,” Eye 14, 450–453 (2000).
    [CrossRef] [PubMed]
  9. D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).
  10. R. Birngruber, U. Schmidt-Erfurth, S. Teschner, J. Noack, “Confocal laser scanning fluorescence topography: a new method for three-dimensional functional imaging of vascular structures,” Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 559–565 (2000).
    [CrossRef]
  11. S. G. Rosolen, G. Saint-MacAry, V. Gautier, J. F. Legargasson, “Ocular fundus images with confocal scanning laser ophthalmoscopy in the dog, monkey and minipig,” Vet. Ophthalmol. 4, 41–45 (2001).
    [CrossRef] [PubMed]
  12. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [CrossRef] [PubMed]
  13. T. Wilson, Confocal Microscopy (Academic, 1990).
  14. T. R. Corle, G. S. Kino, “Depth and transverse resolution,” in Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).
    [CrossRef]
  15. G. Gaida, “Perspectives and limits of three dimensional fundus microscopy,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).
  16. Spectralon reflectance material is a perfectly diffuse reflecting material that is ideal for applications ranging from the UV–visible to the near-infrared to mid-infrared wavelength region. Spectralon is a highly Lambertian, thermoplastic material that can be machined into a wide variety of shapes to suit any reflectance component requirement. Spectralon is a registered product marketed by Labsphere, Inc. North Sutton, N.H.
  17. A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
    [CrossRef] [PubMed]
  18. D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement in confocal scanning laser tomography of the human fundus,” Vision Science and its Applications, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1994), pp. 134–137.
  19. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  20. C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Coss-lett, eds. (Academic, 1987).
  21. R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
    [CrossRef] [PubMed]
  22. R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
    [CrossRef] [PubMed]
  23. H. E. Keller, “Objective lenses for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
    [CrossRef]
  24. C. J. Cogswell, K. G. Larkin, “The specimen illumination path and its effect on image quality,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
    [CrossRef]
  25. J. F. Bille, B. Grimm, J. Liang, K. Muller, “Active-optical improvement of the spatial resolution of the laser tomographic scanner,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).
  26. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  27. J. Liang, D. R. Williams, D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  28. T. Wilson, A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243–256 (1989).
    [CrossRef]
  29. K. Venkateswaran, A. Roorda, F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
    [CrossRef] [PubMed]
  30. T. Wilson, “The role of the pinhole in confocal imaging system,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
    [CrossRef]
  31. P. Artal, I. Iglesias, N. Lopez-Gill, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
    [CrossRef]
  32. Heidelberg Engineering GmbH, Technical Data for the HRT and HRT-II on-line (Heidelberg Engineering GmbH, Heidelberg, Germany, 2003), www.heidelbergengineering.com/hrt2/ .
  33. R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Vis. Sci. 41, 4117–4123 (2000).
    [PubMed]
  34. N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
    [CrossRef] [PubMed]
  35. D. U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
    [CrossRef] [PubMed]
  36. W. J. Donnelly, “Improving imaging in the confocal scanning laser ophthalmoscope,” Master’s thesis (University of Houston, Houston, Tex., 2001).

2004 (1)

K. Venkateswaran, A. Roorda, F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef] [PubMed]

2003 (1)

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

S. G. Rosolen, G. Saint-MacAry, V. Gautier, J. F. Legargasson, “Ocular fundus images with confocal scanning laser ophthalmoscopy in the dog, monkey and minipig,” Vet. Ophthalmol. 4, 41–45 (2001).
[CrossRef] [PubMed]

2000 (3)

R. Birngruber, U. Schmidt-Erfurth, S. Teschner, J. Noack, “Confocal laser scanning fluorescence topography: a new method for three-dimensional functional imaging of vascular structures,” Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 559–565 (2000).
[CrossRef]

F. W. Fitzke, “Imaging the optic nerve and ganglion cell layer,” Eye 14, 450–453 (2000).
[CrossRef] [PubMed]

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Vis. Sci. 41, 4117–4123 (2000).
[PubMed]

1998 (1)

S. Asrani, R. Zeimer, M. F. Goldberg, S. Zou, “Serial optical sectioning of macular holes at different stages of development,” Ophthalmology 105, 66–77 (1998).
[CrossRef] [PubMed]

1997 (2)

1996 (1)

D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).

1995 (1)

1994 (1)

W. N. Wykes, A. A. Pyott, V. G. Ferguson, “Detection of diabetic retinopathy by scanning laser ophthalmoscopy,” Eye 8, 437–439 (1994).
[CrossRef] [PubMed]

1993 (2)

F. W. Fitzke, B. R. Masters, “Three-dimensional visualization of confocal sections of in vivo human fundus and optic nerve,” Curr. Eye Res. 12, 1015–1018 (1993).
[CrossRef] [PubMed]

D. U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
[CrossRef] [PubMed]

1990 (1)

F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).

1989 (4)

D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
[PubMed]

D. van Norren, J. van de Kraats, “Imaging retinal densi-tometry with a confocal scanning laser ophthalmoscope,” Vision Res. 29, 1825–1830 (1989).
[CrossRef]

A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
[CrossRef] [PubMed]

T. Wilson, A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243–256 (1989).
[CrossRef]

1987 (1)

1982 (1)

M. A. Mainster, G. T. Timberlake, R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89, 852–857 (1982).
[CrossRef] [PubMed]

1981 (1)

R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
[CrossRef] [PubMed]

Artal, P.

Asrani, S.

S. Asrani, R. Zeimer, M. F. Goldberg, S. Zou, “Serial optical sectioning of macular holes at different stages of development,” Ophthalmology 105, 66–77 (1998).
[CrossRef] [PubMed]

Bagley, S.

D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).

Bartsch, D.

D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement in confocal scanning laser tomography of the human fundus,” Vision Science and its Applications, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1994), pp. 134–137.

Bartsch, D. U.

D. U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
[CrossRef] [PubMed]

D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
[PubMed]

Begley, C.

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Vis. Sci. 41, 4117–4123 (2000).
[PubMed]

Begley, C. G.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef] [PubMed]

Bille, J. F.

D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
[PubMed]

A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
[CrossRef] [PubMed]

J. F. Bille, B. Grimm, J. Liang, K. Muller, “Active-optical improvement of the spatial resolution of the laser tomographic scanner,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).

Birngruber, R.

R. Birngruber, U. Schmidt-Erfurth, S. Teschner, J. Noack, “Confocal laser scanning fluorescence topography: a new method for three-dimensional functional imaging of vascular structures,” Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 559–565 (2000).
[CrossRef]

Boulton, M. E.

D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).

Bradley, A.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef] [PubMed]

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Vis. Sci. 41, 4117–4123 (2000).
[PubMed]

Campbell, M. C. W.

Carlini, A. R.

T. Wilson, A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243–256 (1989).
[CrossRef]

Cogswell, C. J.

C. J. Cogswell, K. G. Larkin, “The specimen illumination path and its effect on image quality,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
[CrossRef]

Corle, T. R.

T. R. Corle, G. S. Kino, “Depth and transverse resolution,” in Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).
[CrossRef]

Coscas, G.

F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).

Delori, F. C.

Donnelly, W. J.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[CrossRef] [PubMed]

W. J. Donnelly, “Improving imaging in the confocal scanning laser ophthalmoscope,” Master’s thesis (University of Houston, Houston, Tex., 2001).

Dreher, A. W.

A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
[CrossRef] [PubMed]

D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
[PubMed]

Ferguson, V. G.

W. N. Wykes, A. A. Pyott, V. G. Ferguson, “Detection of diabetic retinopathy by scanning laser ophthalmoscopy,” Eye 8, 437–439 (1994).
[CrossRef] [PubMed]

Fitzke, F. W.

F. W. Fitzke, “Imaging the optic nerve and ganglion cell layer,” Eye 14, 450–453 (2000).
[CrossRef] [PubMed]

F. W. Fitzke, B. R. Masters, “Three-dimensional visualization of confocal sections of in vivo human fundus and optic nerve,” Curr. Eye Res. 12, 1015–1018 (1993).
[CrossRef] [PubMed]

Foreman, D. M.

D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).

Freeman, W. R.

D. U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
[CrossRef] [PubMed]

D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
[PubMed]

D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement in confocal scanning laser tomography of the human fundus,” Vision Science and its Applications, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1994), pp. 134–137.

Gaida, G.

G. Gaida, “Perspectives and limits of three dimensional fundus microscopy,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).

Gautier, V.

S. G. Rosolen, G. Saint-MacAry, V. Gautier, J. F. Legargasson, “Ocular fundus images with confocal scanning laser ophthalmoscopy in the dog, monkey and minipig,” Vet. Ophthalmol. 4, 41–45 (2001).
[CrossRef] [PubMed]

Gharib, M.

D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
[PubMed]

Goldberg, M. F.

S. Asrani, R. Zeimer, M. F. Goldberg, S. Zou, “Serial optical sectioning of macular holes at different stages of development,” Ophthalmology 105, 66–77 (1998).
[CrossRef] [PubMed]

Grimm, B.

J. F. Bille, B. Grimm, J. Liang, K. Muller, “Active-optical improvement of the spatial resolution of the laser tomographic scanner,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).

Hebert, T. J.

Himebaugh, N. L.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef] [PubMed]

Hughes, G. W.

R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
[CrossRef] [PubMed]

M. A. Mainster, G. T. Timberlake, R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89, 852–857 (1982).
[CrossRef] [PubMed]

R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
[CrossRef] [PubMed]

Iglesias, I.

Intaglietta, M.

D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
[PubMed]

Ireland, G. W.

D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).

Jalkh, A.

F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).

Keller, H. E.

H. E. Keller, “Objective lenses for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
[CrossRef]

Kino, G. S.

T. R. Corle, G. S. Kino, “Depth and transverse resolution,” in Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).
[CrossRef]

Koenig, F.

F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).

Larkin, K. G.

C. J. Cogswell, K. G. Larkin, “The specimen illumination path and its effect on image quality,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
[CrossRef]

Legargasson, J. F.

S. G. Rosolen, G. Saint-MacAry, V. Gautier, J. F. Legargasson, “Ocular fundus images with confocal scanning laser ophthalmoscopy in the dog, monkey and minipig,” Vet. Ophthalmol. 4, 41–45 (2001).
[CrossRef] [PubMed]

Liang, J.

J. Liang, D. R. Williams, D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. F. Bille, B. Grimm, J. Liang, K. Muller, “Active-optical improvement of the spatial resolution of the laser tomographic scanner,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).

Lopez-Gill, N.

Mainster, M. A.

M. A. Mainster, G. T. Timberlake, R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89, 852–857 (1982).
[CrossRef] [PubMed]

Masters, B. R.

F. W. Fitzke, B. R. Masters, “Three-dimensional visualization of confocal sections of in vivo human fundus and optic nerve,” Curr. Eye Res. 12, 1015–1018 (1993).
[CrossRef] [PubMed]

McLeod, D.

D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).

Miller, D.

Moore, J.

D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).

Muller, K.

J. F. Bille, B. Grimm, J. Liang, K. Muller, “Active-optical improvement of the spatial resolution of the laser tomographic scanner,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).

Noack, J.

R. Birngruber, U. Schmidt-Erfurth, S. Teschner, J. Noack, “Confocal laser scanning fluorescence topography: a new method for three-dimensional functional imaging of vascular structures,” Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 559–565 (2000).
[CrossRef]

Pyott, A. A.

W. N. Wykes, A. A. Pyott, V. G. Ferguson, “Detection of diabetic retinopathy by scanning laser ophthalmoscopy,” Eye 8, 437–439 (1994).
[CrossRef] [PubMed]

Queener, H.

Romero-Borja, F.

K. Venkateswaran, A. Roorda, F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[CrossRef] [PubMed]

Roorda, A.

K. Venkateswaran, A. Roorda, F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[CrossRef] [PubMed]

Rosolen, S. G.

S. G. Rosolen, G. Saint-MacAry, V. Gautier, J. F. Legargasson, “Ocular fundus images with confocal scanning laser ophthalmoscopy in the dog, monkey and minipig,” Vet. Ophthalmol. 4, 41–45 (2001).
[CrossRef] [PubMed]

Saint-MacAry, G.

S. G. Rosolen, G. Saint-MacAry, V. Gautier, J. F. Legargasson, “Ocular fundus images with confocal scanning laser ophthalmoscopy in the dog, monkey and minipig,” Vet. Ophthalmol. 4, 41–45 (2001).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

R. Birngruber, U. Schmidt-Erfurth, S. Teschner, J. Noack, “Confocal laser scanning fluorescence topography: a new method for three-dimensional functional imaging of vascular structures,” Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 559–565 (2000).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Coss-lett, eds. (Academic, 1987).

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Teschner, S.

R. Birngruber, U. Schmidt-Erfurth, S. Teschner, J. Noack, “Confocal laser scanning fluorescence topography: a new method for three-dimensional functional imaging of vascular structures,” Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 559–565 (2000).
[CrossRef]

Thibos, L. N.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef] [PubMed]

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Vis. Sci. 41, 4117–4123 (2000).
[PubMed]

Timberlake, G.

F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).

Timberlake, G. T.

M. A. Mainster, G. T. Timberlake, R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89, 852–857 (1982).
[CrossRef] [PubMed]

Trempe, C.

F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).

Tutt, R.

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Vis. Sci. 41, 4117–4123 (2000).
[PubMed]

van de Kraats, J.

D. van Norren, J. van de Kraats, “Imaging retinal densi-tometry with a confocal scanning laser ophthalmoscope,” Vision Res. 29, 1825–1830 (1989).
[CrossRef]

van de Velde, F.

F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).

van Norren, D.

D. van Norren, J. van de Kraats, “Imaging retinal densi-tometry with a confocal scanning laser ophthalmoscope,” Vision Res. 29, 1825–1830 (1989).
[CrossRef]

Venkateswaran, K.

K. Venkateswaran, A. Roorda, F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef] [PubMed]

Webb, R. H.

R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
[CrossRef] [PubMed]

M. A. Mainster, G. T. Timberlake, R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89, 852–857 (1982).
[CrossRef] [PubMed]

R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
[CrossRef] [PubMed]

Weinreb, R. N.

Williams, D. R.

Wilson, T.

T. Wilson, A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243–256 (1989).
[CrossRef]

T. Wilson, “The role of the pinhole in confocal imaging system,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
[CrossRef]

T. Wilson, Confocal Microscopy (Academic, 1990).

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Wright, A. R.

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef] [PubMed]

Wykes, W. N.

W. N. Wykes, A. A. Pyott, V. G. Ferguson, “Detection of diabetic retinopathy by scanning laser ophthalmoscopy,” Eye 8, 437–439 (1994).
[CrossRef] [PubMed]

Zeimer, R.

S. Asrani, R. Zeimer, M. F. Goldberg, S. Zou, “Serial optical sectioning of macular holes at different stages of development,” Ophthalmology 105, 66–77 (1998).
[CrossRef] [PubMed]

Zinser, G.

D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement in confocal scanning laser tomography of the human fundus,” Vision Science and its Applications, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1994), pp. 134–137.

Zou, S.

S. Asrani, R. Zeimer, M. F. Goldberg, S. Zou, “Serial optical sectioning of macular holes at different stages of development,” Ophthalmology 105, 66–77 (1998).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
[PubMed]

Appl. Opt. (2)

Br. J. Ophthalmol. (1)

D. M. Foreman, S. Bagley, J. Moore, G. W. Ireland, D. McLeod, M. E. Boulton, “Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy,” Br. J. Ophthalmol. 80, 246–251 (1996).

Curr. Eye Res. (1)

F. W. Fitzke, B. R. Masters, “Three-dimensional visualization of confocal sections of in vivo human fundus and optic nerve,” Curr. Eye Res. 12, 1015–1018 (1993).
[CrossRef] [PubMed]

Eye (2)

F. W. Fitzke, “Imaging the optic nerve and ganglion cell layer,” Eye 14, 450–453 (2000).
[CrossRef] [PubMed]

W. N. Wykes, A. A. Pyott, V. G. Ferguson, “Detection of diabetic retinopathy by scanning laser ophthalmoscopy,” Eye 8, 437–439 (1994).
[CrossRef] [PubMed]

Graefe’s Arch. Clin. Exp. Ophthalmol. (1)

R. Birngruber, U. Schmidt-Erfurth, S. Teschner, J. Noack, “Confocal laser scanning fluorescence topography: a new method for three-dimensional functional imaging of vascular structures,” Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 559–565 (2000).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Vis. Sci. 41, 4117–4123 (2000).
[PubMed]

J. Biomed. Opt. (1)

K. Venkateswaran, A. Roorda, F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef] [PubMed]

J. Fr. Ophthalmol. (1)

F. Koenig, G. Timberlake, A. Jalkh, C. Trempe, F. van de Velde, G. Coscas, “Scanning laser ophthalmoscopy. Its value in macular diseases,” J. Fr. Ophthalmol. 13, 253–258 (1990).

J. Microsc. (1)

T. Wilson, A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243–256 (1989).
[CrossRef]

J. Opt. Soc. Am. A (3)

Neurosci. Biobehav. Rev. (1)

D. U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
[CrossRef] [PubMed]

Ophthalmology (2)

M. A. Mainster, G. T. Timberlake, R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89, 852–857 (1982).
[CrossRef] [PubMed]

S. Asrani, R. Zeimer, M. F. Goldberg, S. Zou, “Serial optical sectioning of macular holes at different stages of development,” Ophthalmology 105, 66–77 (1998).
[CrossRef] [PubMed]

Opt. Express (1)

Optom. Vis. Sci. (1)

N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. N. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80, 69–78 (2003).
[CrossRef] [PubMed]

Vet. Ophthalmol. (1)

S. G. Rosolen, G. Saint-MacAry, V. Gautier, J. F. Legargasson, “Ocular fundus images with confocal scanning laser ophthalmoscopy in the dog, monkey and minipig,” Vet. Ophthalmol. 4, 41–45 (2001).
[CrossRef] [PubMed]

Vision Res. (1)

D. van Norren, J. van de Kraats, “Imaging retinal densi-tometry with a confocal scanning laser ophthalmoscope,” Vision Res. 29, 1825–1830 (1989).
[CrossRef]

Other (13)

T. Wilson, Confocal Microscopy (Academic, 1990).

T. R. Corle, G. S. Kino, “Depth and transverse resolution,” in Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).
[CrossRef]

G. Gaida, “Perspectives and limits of three dimensional fundus microscopy,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).

Spectralon reflectance material is a perfectly diffuse reflecting material that is ideal for applications ranging from the UV–visible to the near-infrared to mid-infrared wavelength region. Spectralon is a highly Lambertian, thermoplastic material that can be machined into a wide variety of shapes to suit any reflectance component requirement. Spectralon is a registered product marketed by Labsphere, Inc. North Sutton, N.H.

D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement in confocal scanning laser tomography of the human fundus,” Vision Science and its Applications, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1994), pp. 134–137.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Coss-lett, eds. (Academic, 1987).

T. Wilson, “The role of the pinhole in confocal imaging system,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
[CrossRef]

Heidelberg Engineering GmbH, Technical Data for the HRT and HRT-II on-line (Heidelberg Engineering GmbH, Heidelberg, Germany, 2003), www.heidelbergengineering.com/hrt2/ .

H. E. Keller, “Objective lenses for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
[CrossRef]

C. J. Cogswell, K. G. Larkin, “The specimen illumination path and its effect on image quality,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995).
[CrossRef]

J. F. Bille, B. Grimm, J. Liang, K. Muller, “Active-optical improvement of the spatial resolution of the laser tomographic scanner,” in Scanning Laser Ophthalmoscopy and Tomography, J. E. Nasemann, R. O. W. Burk, eds. (Quintessenz, 1990).

W. J. Donnelly, “Improving imaging in the confocal scanning laser ophthalmoscope,” Master’s thesis (University of Houston, Houston, Tex., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Current optical layout of the AOSLO. Light from the laser is relayed to the DM, the horizontal scanner (HS), the vertical scanner (VS), and finally to the eye through a series of afocal mirror telescopes. Scattered light from the retina returns through the same path and focuses to the confocal pinhole (CP) and PMT detector. A fraction of the light is diverted to the Shack–Hartmann wave-front sensor with a lenslet array (LA) comprised of 400 µm lenslets.

Fig. 2
Fig. 2

Images of the microscopic features imaged in vivo in the retinas of the three subjects that participated in this axial resolution study with the AOSLO instrument. All three features are in the subjects left eye at ≈4.5 deg superior to the fovea. The region of interest (ROI) for axial scanning is shown above as a white box for each subject. The area of the ROI is on average 2400 square pixels.

Fig. 3
Fig. 3

Normalized axial intensity versus axial depth for the AOSLO to determine the axial resolution when operating in three different modes: closed-loop, ▲ (dynamic AO correction); open-loop, △ (static AO correction); and as a standard SLO instrument, ● (no AO correction). The measured axial resolution (FWHM) for each case was 3200, 3700, and 7700 µm, respectively. The corresponding equivalent values for the reduced eye were 120, 138, 278 µm, respectively. These measurements were performed using the 10 D model eye with the 99% certified, diffuse reflectance standard and the 80 µm pinhole. The lateral shift in the uncorrected curve is due to some residual defocus that was present before AO correction.

Fig. 4
Fig. 4

Optical sections of a retinal region in vivo captured by the AOSLO. This composite is generated from video imaging while scanning axially through focus. This is a protruding vessel in the superior retina of AR’s left eye [oculus sinister (OS)]. The scan is calibrated to move in steps of ≈9 µm starting at the posterior retina and moving up to the anterior retinal surface where the nerve fiber layer can be recognized. Each frame is the image of an average of ten registered frames of a 1.4 deg × 1.5 deg region. The white arrow points to the selected feature (ROI) for which the average intensity curve as a function of axial depth was measured. It is worth mentioning that the photoreceptor layer is also resolved and recognizable in this composite along the upper rows of this image composite.

Fig. 5
Fig. 5

Average intensity versus axial depth for a human retina in vivo to determine the axial resolution of the AOSLO in direct clinical applications. These curves were generated for five different pinhole sizes from image composites of video frames digitally recorded with the AOSLO. The symbols ♦, △, ●, ○, and ▴ represent pinhole sizes of 200, 150, 100, 80, and 50 µm, respectively. The solid thick curves circumscribing the 200 and 50 µm curves are examples of the curve fit after the Fourier filtering of the raw data. A typical composite of the through-focus scan is shown in Fig. 4 for one of the subjects, and the experimental axial resolution values for all three subjects in this part of the study are listed in Table 1.

Fig. 6
Fig. 6

Axial resolution for the AOSLO as measured from three human retinas in vivo. Plotted are values from best fits to the experimental curves after the Fourier filtering of the raw data, as explained in the caption of Table 1. The straight lines are linear fits showing the trend that the data values follow for each of the three subjects. The symbols □, △, and ○ represent data points for AR, RS, and SB, respectively.

Fig. 7
Fig. 7

Curves of average axial intensity versus axial depth for a model eye in which the retinal plane is occupied by a calibrated diffuse reflectance standard (Spectralon with 99% diffuse reflectance in the visible range) and where the cornea and crystalline lens are mimicked by a 10 D achromat lens. The symbols ♦, ▴, △, ○, and ● represent data points for the 200, 150, 100, 80, and 50 µm pinholes, respectively. The experimental axial resolution values (FWHM of these curves) for the five different pinhole sizes are listed in Table 2.

Fig. 8
Fig. 8

Axial resolution as a function of the confocal pinhole size for the reduced eye. The data points plotted here were calculated from experimental measurements of a model eye with a certified diffuse reflectance standard at the retinal plane. FWHM data from the second column in Table 2 are plotted here as functions of the confocal pinhole size in micrometers. The straight line fitted to the data yielded the functional dependence to calculate the axial resolution for this reduced eye model.

Fig. 9
Fig. 9

Theoretically computed axial resolution for (A) a plane specular reflector and (B) a diffuse reflector. Measurements for the human eye in vivo were performed using five different confocal pinhole sizes: 50, 80, 100, 150, and 200 µm. The open squares (□) represent the raw axial resolution (FWHM) values experimentally measured on the three subjects AR, RS, and SB. These are listed in Table 1. The dashed lines are best straight-line fits to indicate the trend of the axial resolution for each subject. The experimental data points for the diffuse reflector Spectralon were obtained using confocal pinholes in the range of 30–200 µm.

Tables (4)

Tables Icon

Table 1 FWHM Values for Similar Curves as Those Shown in Fig. 5 for the Three Human Retinasa

Tables Icon

Table 2 Axial Resolution Values for the 10 D Eye (Model Eye with Spectralon Retina) for Raw Experimental FWHM Valuesa

Tables Icon

Table 3 Parameters Used in the Conversion to the Optical, Dimensionless Coordinates u and νa

Tables Icon

Table 4 Comparison of the 3-D Resolution Element for the AOSLO, the Conventional SLO, and the Low-Coherence Technique OCTa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W ( U ) = { 1 for 0 U f c 0 U > f c } ,
i L ( u ) = F T 1 [ I ( U ) W ( 0 U f c ) ] .
u = ( 8 π n / λ ) z sin 2 ( α / 2 ) ,
ν = ( 2 π / λ ) ( d / M ν A ) sin ( α ) ,

Metrics