Abstract

A multiple-trap single-beam scanning laser tweezer system was developed and characterized. Different stationary and mobile multiple-trap modes were generated for polystyrene beads in a water environment. Trapping efficiency and stability were investigated for several dynamic parameters such as transition time between the sites, waiting time on a single site, number of trapping sites, and IR laser power. Optimal parameters for efficient generation of complex arrays and matrices were determined. We demonstrate an example of a single laser beam multiple-trap application by measuring the trap’s stiffness in water for our laser tweezer setup.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, D. S. Kaputa, A. N. Cartwright, and P. N. Prasad
Opt. Lett. 28(23) 2288-2290 (2003)

Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset

Xinlin Chen, Guangzong Xiao, Hui Luo, Wei Xiong, and Kaiyong Yang
Opt. Express 24(7) 7575-7584 (2016)

Touching the microworld with force-feedback optical tweezers

Cécile Pacoret, Richard Bowman, Graham Gibson, Sinan Haliyo, David Carberry, Arvid Bergander, Stéphane Régnier, and Miles Padgett
Opt. Express 17(12) 10259-10264 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription