Abstract

Most research in optical imaging incorrectly assumes that light transport in nonscattering regions in the head may be modeled by use of the diffusion approximation. The effect of this assumption is examined in a series of experiments on tissue-equivalent phantoms. Images from cylindrical and head-shaped phantoms with and without clear regions [simulating the cerebrospinal fluid (CSF) filled ventricles] and a clear layer (simulating the CSF layer surrounding the brain) are reconstructed with linear and nonlinear reconstruction techniques. The results suggest that absorbing and scattering perturbations can be identified reliably with nonlinear reconstruction methods when the clear regions are also present in the reference data but that the quality of the image degrades considerably if the reference data does not contain these features. Linear reconstruction performs similarly to nonlinear reconstruction, provided the clear regions are present in the reference data, but otherwise linear reconstruction fails. This study supports the use of linear reconstruction for dynamic imaging but suggests that, in all cases, image quality is likely to improve if the clear regions are modeled correctly.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head

Eiji Okada, Michael Firbank, Martin Schweiger, Simon R. Arridge, Mark Cope, and David T. Delpy
Appl. Opt. 36(1) 21-31 (1997)

Optical tomography in the presence of void regions

Hamid Dehghani, Simon R. Arridge, Martin Schweiger, and David T. Delpy
J. Opt. Soc. Am. A 17(9) 1659-1670 (2000)

Linear single-step image reconstruction in the presence of nonscattering regions

H. Dehghani and D. T. Delpy
J. Opt. Soc. Am. A 19(6) 1162-1171 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription