Abstract

As an emerging technique, water immersion lithography, offers the capability of reducing critical dimensions by increasing the numerical aperture that is due to the higher refractive indices of immersion liquids than that of air. However, in the process of forming a water fluid layer between the resist and the lens surfaces, air bubbles are often created because of the high surface tension of water. The presence of air bubbles in the immersion layer will degrade the image quality because of the inhomogeneity-induced light scattering in the optical path. Analysis by geometrical optics indicates that the total reflection of light causes the enhancement of scattering in the region in which the scattering angle is less than the critical scattering angle, which is 92 deg at 193 nm. Based on Mie theory, numerical evaluation of scattering that is due to air bubbles, polystyrene spheres, and poly(methyl methacrylate) spheres was conducted for TE, TM, or unpolarized incident light. Comparison of the scattering patterns shows that the polystyrene spheres and air bubbles resemble each other with respect to scattering properties. In this paper, polystyrene spheres are used to mimic air bubbles in studies of lithographic imaging of bubbles in immersion water. In an interferometric lithography system, the distance beyond which bubbles will not print can be estimated by direct counting of defect sites.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1–20 (2004).
    [CrossRef]
  2. M. D. Levenson, N. S. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).
    [CrossRef]
  3. M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).
  4. M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
    [CrossRef]
  5. J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
    [CrossRef]
  6. D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).
  7. J. Garofalo, C. J. Biddick, R. L. Kostelak, S. Vaidya, “Mask assisted off-axis illumination technique for random logic,” J. Vac. Sci. Technol. B 11, 2651–2658 (1993).
    [CrossRef]
  8. E. Tamechika, T. Horiuchi, K. Harada, “Resolution improvement using auxiliary pattern groups in oblique illumination lithography,” Jpn. J. Appl. Phys. 32, 5856–5862 (1993).
    [CrossRef]
  9. B. W. Smith, “Optics for photolithography,” in Microlithography Science and Technology, J. R. Sheats, B. W. Smith, eds. (Marcel Dekker, New York, 1998), pp. 171–270.
  10. K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
    [CrossRef]
  11. R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).
  12. F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
    [CrossRef]
  13. A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
    [CrossRef]
  14. B. W. Smith, H. Kang, A. Bourov, F. Cropanese, Y. Fan, “Water immersion optical lithography for the 45-nm node,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 679–689 (2003).
    [CrossRef]
  15. B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).
  16. B.-J. Lin, “Immersion lithography and its impact on semiconductor manufacturing,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 46–67 (2004).
    [CrossRef]
  17. S. R. Brueck, A. M. Biswas, “Extension of 193-nm immersion optical lithography to the 22-nm2 half-pitch node,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1315–1322 (2004).
    [CrossRef]
  18. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
    [CrossRef]
  19. S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto, “Feasibility of immersion lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 264–272 (2004).
    [CrossRef]
  20. M. Cheng, B. C. Ho, R. Yamaguchi, K. Yoshioka, H. Yaegashi, “Optical coupling of lens, liquid and resist in immersion lithography: rigorous model and assessment,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 405–414 (2004).
    [CrossRef]
  21. B. J. Lin, “The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 7–12 (2002).
  22. S. Owa, H. Nagasaka, “Immersion lithography: its potential performance and issues,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 724–732 (2003).
    [CrossRef]
  23. P. L. Marston, “Light scattering from bubbles in water,” in Proceedings of Oceans 89, Publication 89CH2780-5 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1989), pp. 1186–1193.
    [CrossRef]
  24. C. F. Bohren, D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998), pp. 82–129.
    [CrossRef]

2004

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

2002

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

B. J. Lin, “The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 7–12 (2002).

1999

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

1994

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

1993

J. Garofalo, C. J. Biddick, R. L. Kostelak, S. Vaidya, “Mask assisted off-axis illumination technique for random logic,” J. Vac. Sci. Technol. B 11, 2651–2658 (1993).
[CrossRef]

E. Tamechika, T. Horiuchi, K. Harada, “Resolution improvement using auxiliary pattern groups in oblique illumination lithography,” Jpn. J. Appl. Phys. 32, 5856–5862 (1993).
[CrossRef]

1984

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).

1982

M. D. Levenson, N. S. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).
[CrossRef]

Aschke, L.

A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
[CrossRef]

Bayer, P. W.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).

Biddick, C. J.

J. Garofalo, C. J. Biddick, R. L. Kostelak, S. Vaidya, “Mask assisted off-axis illumination technique for random logic,” J. Vac. Sci. Technol. B 11, 2651–2658 (1993).
[CrossRef]

Biswas, A. M.

S. R. Brueck, A. M. Biswas, “Extension of 193-nm immersion optical lithography to the 22-nm2 half-pitch node,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1315–1322 (2004).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998), pp. 82–129.
[CrossRef]

Bourov, A.

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

B. W. Smith, H. Kang, A. Bourov, F. Cropanese, Y. Fan, “Water immersion optical lithography for the 45-nm node,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 679–689 (2003).
[CrossRef]

Brueck, S. R.

S. R. Brueck, A. M. Biswas, “Extension of 193-nm immersion optical lithography to the 22-nm2 half-pitch node,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1315–1322 (2004).
[CrossRef]

Brueckner, S.

A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
[CrossRef]

Chen, J. F.

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Cheng, M.

M. Cheng, B. C. Ho, R. Yamaguchi, K. Yoshioka, H. Yaegashi, “Optical coupling of lens, liquid and resist in immersion lithography: rigorous model and assessment,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 405–414 (2004).
[CrossRef]

Chojetzki, C.

A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
[CrossRef]

Cropanese, F.

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

B. W. Smith, H. Kang, A. Bourov, F. Cropanese, Y. Fan, “Water immersion optical lithography for the 45-nm node,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 679–689 (2003).
[CrossRef]

Curtin, J. E.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

De Bisschop, P.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Engel, A.

A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
[CrossRef]

Eschbach, F.

F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
[CrossRef]

Fan, Y.

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

B. W. Smith, H. Kang, A. Bourov, F. Cropanese, Y. Fan, “Water immersion optical lithography for the 45-nm node,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 679–689 (2003).
[CrossRef]

Foster, C.

F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
[CrossRef]

French, R. H.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Garofalo, J.

J. Garofalo, C. J. Biddick, R. L. Kostelak, S. Vaidya, “Mask assisted off-axis illumination technique for random logic,” J. Vac. Sci. Technol. B 11, 2651–2658 (1993).
[CrossRef]

Goethals, A. M.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Goodman, D. S.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).

Harada, K.

E. Tamechika, T. Horiuchi, K. Harada, “Resolution improvement using auxiliary pattern groups in oblique illumination lithography,” Jpn. J. Appl. Phys. 32, 5856–5862 (1993).
[CrossRef]

Hermans, J.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Hinsberg, W. D.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

Hirakawa, O.

S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto, “Feasibility of immersion lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 264–272 (2004).
[CrossRef]

Ho, B. C.

M. Cheng, B. C. Ho, R. Yamaguchi, K. Yoshioka, H. Yaegashi, “Optical coupling of lens, liquid and resist in immersion lithography: rigorous model and assessment,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 405–414 (2004).
[CrossRef]

Hoffnagle, J. A.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

Horiuchi, T.

E. Tamechika, T. Horiuchi, K. Harada, “Resolution improvement using auxiliary pattern groups in oblique illumination lithography,” Jpn. J. Appl. Phys. 32, 5856–5862 (1993).
[CrossRef]

Houle, F. A.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

Hsu, S.

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998), pp. 82–129.
[CrossRef]

Hughes, G. P.

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Ishii, Y.

S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto, “Feasibility of immersion lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 264–272 (2004).
[CrossRef]

Ivaldi, J.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Jonckheere, R.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Kang, H.

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

B. W. Smith, H. Kang, A. Bourov, F. Cropanese, Y. Fan, “Water immersion optical lithography for the 45-nm node,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 679–689 (2003).
[CrossRef]

Kao, C. C.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Knapp, K.

A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
[CrossRef]

Kostelak, R. L.

J. Garofalo, C. J. Biddick, R. L. Kostelak, S. Vaidya, “Mask assisted off-axis illumination technique for random logic,” J. Vac. Sci. Technol. B 11, 2651–2658 (1993).
[CrossRef]

Krukonis, V.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Kunz, R. R.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Lafferty, N.

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

Laidig, T.

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

Laidig, T. L.

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Levenson, M. D.

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).

M. D. Levenson, N. S. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).
[CrossRef]

Light, S.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Lin, B. J.

B. J. Lin, “The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 7–12 (2002).

Lin, B.-J.

B.-J. Lin, “Immersion lithography and its impact on semiconductor manufacturing,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 46–67 (2004).
[CrossRef]

Lin, L.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Lindsey, S.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).

Lo, F.-C.

F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
[CrossRef]

MacDonald, S. S.

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Marston, P. L.

P. L. Marston, “Light scattering from bubbles in water,” in Proceedings of Oceans 89, Publication 89CH2780-5 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1989), pp. 1186–1193.
[CrossRef]

Matsukura, I.

F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
[CrossRef]

Mawn, M. P.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

McAfferty, D.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Moersen, E.

A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
[CrossRef]

Nagasaka, H.

S. Owa, H. Nagasaka, “Immersion lithography: its potential performance and issues,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 724–732 (2003).
[CrossRef]

S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto, “Feasibility of immersion lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 264–272 (2004).
[CrossRef]

Nakagawa, K. H.

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Ng, W.

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Okoroanyanwu, U.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Oneil, T.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Orvek, K.

F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
[CrossRef]

Owa, S.

S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto, “Feasibility of immersion lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 264–272 (2004).
[CrossRef]

S. Owa, H. Nagasaka, “Immersion lithography: its potential performance and issues,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 724–732 (2003).
[CrossRef]

Petersen, J. S.

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Peterson, J. S.

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

Ronse, K.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Sanchez, M.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

Santini, H. A. E.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).

Schellenberg, F. M.

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1–20 (2004).
[CrossRef]

Sewell, H.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).
[CrossRef]

Sinta, R.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Smith, B. W.

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

B. W. Smith, “Optics for photolithography,” in Microlithography Science and Technology, J. R. Sheats, B. W. Smith, eds. (Marcel Dekker, New York, 1998), pp. 171–270.

B. W. Smith, H. Kang, A. Bourov, F. Cropanese, Y. Fan, “Water immersion optical lithography for the 45-nm node,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 679–689 (2003).
[CrossRef]

Socha, R.

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

Socha, R. J.

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Switkes, M.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Tamechika, E.

E. Tamechika, T. Horiuchi, K. Harada, “Resolution improvement using auxiliary pattern groups in oblique illumination lithography,” Jpn. J. Appl. Phys. 32, 5856–5862 (1993).
[CrossRef]

Tregub, A.

F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
[CrossRef]

Triebel, W.

A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
[CrossRef]

Tsushima, N.

F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
[CrossRef]

Vaidya, S.

J. Garofalo, C. J. Biddick, R. L. Kostelak, S. Vaidya, “Mask assisted off-axis illumination technique for random logic,” J. Vac. Sci. Technol. B 11, 2651–2658 (1993).
[CrossRef]

Van Den Broeke, D.

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).
[CrossRef]

Wampler, K. E.

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

Watso, R.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Wetmore, P.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Wheland, R. C.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Williams, K.

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

Yaegashi, H.

M. Cheng, B. C. Ho, R. Yamaguchi, K. Yoshioka, H. Yaegashi, “Optical coupling of lens, liquid and resist in immersion lithography: rigorous model and assessment,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 405–414 (2004).
[CrossRef]

Yamaguchi, R.

M. Cheng, B. C. Ho, R. Yamaguchi, K. Yoshioka, H. Yaegashi, “Optical coupling of lens, liquid and resist in immersion lithography: rigorous model and assessment,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 405–414 (2004).
[CrossRef]

Yamamoto, T.

S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto, “Feasibility of immersion lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 264–272 (2004).
[CrossRef]

Yoshioka, K.

M. Cheng, B. C. Ho, R. Yamaguchi, K. Yoshioka, H. Yaegashi, “Optical coupling of lens, liquid and resist in immersion lithography: rigorous model and assessment,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 405–414 (2004).
[CrossRef]

Zavyalova, L.

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

IEEE Trans. Electron Devices

M. D. Levenson, N. S. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).
[CrossRef]

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).

J. Microlithogr. Microfabr. Microsyst.

D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).

R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).

B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).

B. J. Lin, “The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 7–12 (2002).

J. Vac. Sci. Technol. B

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

J. Garofalo, C. J. Biddick, R. L. Kostelak, S. Vaidya, “Mask assisted off-axis illumination technique for random logic,” J. Vac. Sci. Technol. B 11, 2651–2658 (1993).
[CrossRef]

Jpn. J. Appl. Phys.

E. Tamechika, T. Horiuchi, K. Harada, “Resolution improvement using auxiliary pattern groups in oblique illumination lithography,” Jpn. J. Appl. Phys. 32, 5856–5862 (1993).
[CrossRef]

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

Microelectron. Eng.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Other

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1–20 (2004).
[CrossRef]

B.-J. Lin, “Immersion lithography and its impact on semiconductor manufacturing,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 46–67 (2004).
[CrossRef]

S. R. Brueck, A. M. Biswas, “Extension of 193-nm immersion optical lithography to the 22-nm2 half-pitch node,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1315–1322 (2004).
[CrossRef]

F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004).
[CrossRef]

A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001).
[CrossRef]

B. W. Smith, H. Kang, A. Bourov, F. Cropanese, Y. Fan, “Water immersion optical lithography for the 45-nm node,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 679–689 (2003).
[CrossRef]

J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001).
[CrossRef]

B. W. Smith, “Optics for photolithography,” in Microlithography Science and Technology, J. R. Sheats, B. W. Smith, eds. (Marcel Dekker, New York, 1998), pp. 171–270.

S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto, “Feasibility of immersion lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 264–272 (2004).
[CrossRef]

M. Cheng, B. C. Ho, R. Yamaguchi, K. Yoshioka, H. Yaegashi, “Optical coupling of lens, liquid and resist in immersion lithography: rigorous model and assessment,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 405–414 (2004).
[CrossRef]

S. Owa, H. Nagasaka, “Immersion lithography: its potential performance and issues,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 724–732 (2003).
[CrossRef]

P. L. Marston, “Light scattering from bubbles in water,” in Proceedings of Oceans 89, Publication 89CH2780-5 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1989), pp. 1186–1193.
[CrossRef]

C. F. Bohren, D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998), pp. 82–129.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

Reflection of a ray from a spherical bubble in water. Total reflection occurs when incident angle i is larger than the critical angle, sin−1(ninw).

Fig. 2
Fig. 2

Lateral distribution of the relative scattered irradiance of a 2 µm diameter air bubble at various distances from the bubble.

Fig. 3
Fig. 3

Lateral distribution of the relative scattered irradiance of a 2 µm diameter PST sphere at various distances from the bubble.

Fig. 4
Fig. 4

Lateral distribution of the relative scattered irradiance of a 2 µm diameter PMMA sphere at various distances from the bubble.

Fig. 5
Fig. 5

Distribution of the relative scattered irradiance of a 2 µm diameter air bubble in water.

Fig. 6
Fig. 6

Distribution of the relative scattered irradiance of a 2 µm diameter PST sphere in water.

Fig. 7
Fig. 7

Distribution of the relative scattered irradiance of a 2 µm diameter PMMA sphere in water.

Fig. 8
Fig. 8

Distribution of the relative scattered irradiance of a 1 µm diameter air bubble in water.

Fig. 9
Fig. 9

Distribution of the relative scattered irradiance of a 0.5 µm diameter air bubble in water.

Fig. 10
Fig. 10

Distribution of the relative scattered irradiance of two 2 µm diameter air bubbles separated by 100 µm in water under unpolarized irradiation.

Fig. 11
Fig. 11

Distribution of the relative scattered irradiance of two 2 µm diameter air bubbles separated by 100 µm in water under TE-polarized irradiation.

Fig. 12
Fig. 12

Distribution of the relative scattered irradiance of two 2 µm diameter air bubbles separated by 100 µm in water under TM-polarized irradiation.

Fig. 13
Fig. 13

Distribution of the relative scattered irradiance of a 2 µm diameter air bubble in water illuminated by two oblique (±56°) beams without polarization.

Fig. 14
Fig. 14

Distribution of the relative scattered irradiance of a 2 µm diameter air bubble in water illuminated by two oblique (±56°) beams with TE polarization.

Fig. 15
Fig. 15

Distribution of the relative scattered irradiance of a 2 µm diameter air bubble in water illuminated by two oblique (±56°) beams with TM polarization.

Fig. 16
Fig. 16

Measured relative scattered irradiance of 2 µm diameter (2 × 10−4%) PST beads at 10° off the forward direction.

Fig. 17
Fig. 17

Mie scattering calculation for 2 µm diameter PST beads at 10° off the forward direction.

Fig. 18
Fig. 18

Setup for direct lithographic imaging of bubbles.

Fig. 19
Fig. 19

Total number of bubbles in an optical path versus the total number eventually imaged.

Fig. 20
Fig. 20

Scanning electron microscope pictures of (a) a PST sphere and (b), (c) a PST sphere image in resist.

Fig. 21
Fig. 21

Interferometric system for bubble imaging.

Fig. 22
Fig. 22

Setup for two-beam interference through scattering media.

Fig. 23
Fig. 23

Interferometric image in water suspended with 2 µm diameter PST beads at 5 × 10−5 weight concentration.

Fig. 24
Fig. 24

Interferometric image in water suspended with 0.5 µm diameter PST beads at 2.5 × 10−5 weight concentration.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i c = arcsin ( n i / n w ) ,
θ c = 180 ° 2 i c .
i c = arcsin ( 1 1.437 ) = 44 ° , θ c = 180 ° 2 i c = 92 ° .
i j = i inc I j a 2 / 4 R 2 ,
I j = | S j | 2 ( 2 / k a ) 2 ,

Metrics