Abstract

We demonstrate tapering of a high air-fill fraction photonic crystal fiber by using the flame-brushing technique. Transverse probing along the taper allows us to ascertain how the microstructure is preserved during tapering. Experimental results are compared with numerical simulations performed with the finite-difference time-domain and plane-wave expansion methods. Through this investigation we find that the fiber geometry is well preserved throughout the tapering process and we resolve the apparent discrepancies between simulation and experiment that arise through the finite extent of the fiber microstructure.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  2. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
    [CrossRef] [PubMed]
  3. N. M. Litchinitser, S. C. Dunn, P.-E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express, 12, 1540–1550 (2004).
    [CrossRef] [PubMed]
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  5. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, R. Folkenberg, A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22, 11–15 (2004).
    [CrossRef]
  6. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
    [CrossRef]
  7. A. V. Avdokhin, S. V. Popov, J. R. Taylor, “Continuous-wave, high-power, in Raman continuum generation holey fibers”, Opt. Lett. 28, 1353–1355 (2003).
    [CrossRef] [PubMed]
  8. J. C. Knight, T. A. Birks, P. St. J. Russell, J. G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Opt. 37, 449–452 (1998).
    [CrossRef]
  9. H. C. Nguyen, P. Domachuk, M. J. Steel, B. J. Eggleton, “Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 1852–1854 (2004).
    [CrossRef]
  10. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838–1841 (2004).
    [CrossRef]
  11. E. Magi, P. E. Steinvurzel, B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12, 776–784 (2003).
    [CrossRef]
  12. E. C. Magi, P. Steinvurzel, B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976–3982 (2004).
    [CrossRef]

2004 (6)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

H. C. Nguyen, P. Domachuk, M. J. Steel, B. J. Eggleton, “Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 1852–1854 (2004).
[CrossRef]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838–1841 (2004).
[CrossRef]

E. C. Magi, P. Steinvurzel, B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976–3982 (2004).
[CrossRef]

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, R. Folkenberg, A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22, 11–15 (2004).
[CrossRef]

N. M. Litchinitser, S. C. Dunn, P.-E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express, 12, 1540–1550 (2004).
[CrossRef] [PubMed]

2003 (3)

2001 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

1998 (1)

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Avdokhin, A. V.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, J. G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Opt. 37, 449–452 (1998).
[CrossRef]

Bjarklev, A.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

Broeng, J.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

de Sterke, C. M.

Domachuk, P.

H. C. Nguyen, P. Domachuk, M. J. Steel, B. J. Eggleton, “Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 1852–1854 (2004).
[CrossRef]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838–1841 (2004).
[CrossRef]

Dunn, S. C.

Eggleton, B. J.

N. M. Litchinitser, S. C. Dunn, P.-E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express, 12, 1540–1550 (2004).
[CrossRef] [PubMed]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838–1841 (2004).
[CrossRef]

E. C. Magi, P. Steinvurzel, B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976–3982 (2004).
[CrossRef]

H. C. Nguyen, P. Domachuk, M. J. Steel, B. J. Eggleton, “Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 1852–1854 (2004).
[CrossRef]

E. Magi, P. E. Steinvurzel, B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12, 776–784 (2003).
[CrossRef]

Engeness, T. D.

Fink, Y.

Folkenberg, R.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

Gu, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838–1841 (2004).
[CrossRef]

Hansen, T. P.

Ibanescu, M.

Jacobs, S. A.

Jakobsen, C.

Joannopoulos, J. D.

Johnson, S. G.

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, J. G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Opt. 37, 449–452 (1998).
[CrossRef]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

Litchinitser, N. M.

Magi, E.

Magi, E. C.

E. C. Magi, P. Steinvurzel, B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976–3982 (2004).
[CrossRef]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

McPhedran, R. C.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

Nguyen, H. C.

H. C. Nguyen, P. Domachuk, M. J. Steel, B. J. Eggleton, “Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 1852–1854 (2004).
[CrossRef]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838–1841 (2004).
[CrossRef]

Nielsen, M. D.

Popov, S. V.

Rarity, J. G.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. S.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

Simonsen, H. R.

Skorobogatiy, M.

Skovgaard, P. M. W.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

Soljacic, M.

Steel, M. J.

H. C. Nguyen, P. Domachuk, M. J. Steel, B. J. Eggleton, “Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 1852–1854 (2004).
[CrossRef]

Steinvurzel, P.

E. C. Magi, P. Steinvurzel, B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976–3982 (2004).
[CrossRef]

Steinvurzel, P. E.

Steinvurzel, P.-E.

Straub, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838–1841 (2004).
[CrossRef]

Taylor, J. R.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

Vienne, G.

Weisberg, O.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

White, T. P.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838–1841 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. C. Nguyen, P. Domachuk, M. J. Steel, B. J. Eggleton, “Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 1852–1854 (2004).
[CrossRef]

J. Appl. Phys. (1)

E. C. Magi, P. Steinvurzel, B. J. Eggleton, “Transverse characterization of tapered photonic crystal fibers,” J. Appl. Phys. 96, 3976–3982 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SEM cross section of the PCF studied, which has air-fill fraction 0.93. Left, untapered fiber (pitch, 3.49 µm), right, the waist of the tapered fiber (pitch, 0.7 µm). Notice the good reproduction of the structure attained through tapering.

Fig. 2
Fig. 2

Left, schematic of the transverse probing method. Light is incident at the left from a SMF, where it interacts with the microstructure of the transverse fiber and then is collected by another SMF. Right, photograph of the experimental geometry.

Fig. 3
Fig. 3

Top, composite photograph of the PCF taper. Bottom, taper diameter measured by conventional optical microscopy.

Fig. 4
Fig. 4

Positions of the bandgaps calculated for the transverse tapered fiber determined by the plane-wave expansion method. Frequency is expressed in units normalized to the period of the photonic crystal, a. Shown as shaded horizontal bars are the partial bandgaps for both polarizations, as indicated.

Fig. 5
Fig. 5

Fundamental gaps observed in transverse high air-fill PCFs for both polarizations, showing an attenuation of approximately 7 dB. Hatching indicates the gap positions predicted by the plane-wave calculation. The outer diameter of the taper is given in the lower left hand corner of each plot.

Fig. 6
Fig. 6

Second-order bandgaps for both polarizations; the plane-wave predictions are shown hatched. Notice that the TM partial gap is much deeper and broader than the TE; this behavior is supported by the plane-wave calculations.

Fig. 7
Fig. 7

Third-order partial bandgap region in both polarizations. Notice a distinctly deeper feature in the TM. Indeed, the plane-wave calculation does not predict a feature in the TE. There is, however, a small attenuation in the TE that is dependent on taper position. We attribute this to a small lack of polarizer discrimination. There is also an offset in the position of the predicted partial gap compared with that of the experiment. We attribute this shift to the presence of higher-order gaps that have higher dependence on spatial perturbation of the photonic crystal.

Fig. 8
Fig. 8

Positions of the partial bandgaps, from experiment and as predicted by the plane-wave calculation. The taper diameter is given as a ratio of the tapered to the untapered outer diameter. The positions of the fundamental and second-order gaps are well predicted by the plane wave; however, a slight offset is seen in the prediction of the third-order gap. This shift is attributed to the greater dependence of the higher-order partial gaps on spatial disorder.

Fig. 9
Fig. 9

Numerical spectrum for the untapered fiber in the TM polarization. The fundamental partial gap is deeper and broader than the second-order partial gap, as predicted by the plane-wave calculation. Indicated by hatching are the positions of the partial bandgaps predicted by the plane-wave expansion.

Fig. 10
Fig. 10

Top, wavelength-normalized numerical spectrum for the tapered fiber. Bottom, wavelength-normalized spectrum for the tapered fiber with a scaled input beam, in the TM polarization. Indicated by circles are the positions where the spectra for the two taper diameters (28.9 and 54.1 µm) have been joined. Indicated by hatching are the positions of the partial bandgaps predicted by the plane-wave expansion.

Tables (1)

Tables Icon

Table 1 Summary of Depths for Fundamental and Second-Order Partial Gaps in Tapered and Untapered Geometriesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ 1 = λ ( d 0 d ) ,
w 1 = w ( d d 0 ) ,

Metrics