Abstract

The linear mechanism for optical-to-acoustic energy conversion is explored for optoacoustic communication from an in-air platform or surface vessel to a submerged vessel such as a submarine or unmanned undersea vehicle. The communication range that can be achieved is addressed. A number of conventional signals used in underwater acoustic telemetry applications are shown to be capable of being generated experimentally through the linear optoacoustic regime conversion process. These results are in agreement with simulation based on current theoretical models. A number of practical issues concerning linear optoacoustic communication are addressed that lead to a formulation of a linear-regime optoacoustic communication scheme. The use of oblique laser beam incidence at the air–water interface to obtain considerable in-air range from the laser source to the in-water receiver is addressed. Also, the effect of oblique incidence on in-water range is examined. Next, the optimum and suboptimum linear optoacoustic sound-generation techniques for selecting the optical wavelength and signaling frequency for optimizing in-water range are addressed and discussed. Optoacoustic communication techniques employing M-ary frequency shift keying and multifrequency shift keying are then compared with regard to communication parameters such as bandwidth, data rate, range coverage, and number of lasers employed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, “Upon the production of sound by radiant energy,” Philos. Mag. Ser. 5 11, 510 (1881).
    [CrossRef]
  2. P. J. Westervelt, R. S. Larson, “Laser-excited broadside array,” J. Acoust. Soc. Am. 54, 121–122 (1973).
    [CrossRef]
  3. L. M. Lyamshev, L. V. Sedov, “Optical generation of sound in a liquid: thermal mechanism (review),” Sov. Phys. Acoust. 27(1), 4–18 (1981).
  4. Y. H. Berthelot, “Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers,” J. Acoust. Soc. Am. 85, 1173–1181 (1989).
    [CrossRef]
  5. F. A. Blackmon, “Linear and non-linear opto-acoustic communication,” Ph.D. dissertation (University of Massachusetts, Dartmouth, Mass., 2003).
  6. M. S. Sodha, V. Rai, M. P. Verma, S. Konar, K. P. Maheshwari, “Underwater optical generation of sound: oblique incidence,” Pramana J. Phys. 41(1), 1–7 (1993).
    [CrossRef]
  7. Laser Focus World Buyers Guide1999 (Penn Well, Tulsa, Oklahoma, 1999), Vol. 35(1).

1993 (1)

M. S. Sodha, V. Rai, M. P. Verma, S. Konar, K. P. Maheshwari, “Underwater optical generation of sound: oblique incidence,” Pramana J. Phys. 41(1), 1–7 (1993).
[CrossRef]

1989 (1)

Y. H. Berthelot, “Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers,” J. Acoust. Soc. Am. 85, 1173–1181 (1989).
[CrossRef]

1981 (1)

L. M. Lyamshev, L. V. Sedov, “Optical generation of sound in a liquid: thermal mechanism (review),” Sov. Phys. Acoust. 27(1), 4–18 (1981).

1973 (1)

P. J. Westervelt, R. S. Larson, “Laser-excited broadside array,” J. Acoust. Soc. Am. 54, 121–122 (1973).
[CrossRef]

1881 (1)

A. G. Bell, “Upon the production of sound by radiant energy,” Philos. Mag. Ser. 5 11, 510 (1881).
[CrossRef]

Bell, A. G.

A. G. Bell, “Upon the production of sound by radiant energy,” Philos. Mag. Ser. 5 11, 510 (1881).
[CrossRef]

Berthelot, Y. H.

Y. H. Berthelot, “Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers,” J. Acoust. Soc. Am. 85, 1173–1181 (1989).
[CrossRef]

Blackmon, F. A.

F. A. Blackmon, “Linear and non-linear opto-acoustic communication,” Ph.D. dissertation (University of Massachusetts, Dartmouth, Mass., 2003).

Konar, S.

M. S. Sodha, V. Rai, M. P. Verma, S. Konar, K. P. Maheshwari, “Underwater optical generation of sound: oblique incidence,” Pramana J. Phys. 41(1), 1–7 (1993).
[CrossRef]

Larson, R. S.

P. J. Westervelt, R. S. Larson, “Laser-excited broadside array,” J. Acoust. Soc. Am. 54, 121–122 (1973).
[CrossRef]

Lyamshev, L. M.

L. M. Lyamshev, L. V. Sedov, “Optical generation of sound in a liquid: thermal mechanism (review),” Sov. Phys. Acoust. 27(1), 4–18 (1981).

Maheshwari, K. P.

M. S. Sodha, V. Rai, M. P. Verma, S. Konar, K. P. Maheshwari, “Underwater optical generation of sound: oblique incidence,” Pramana J. Phys. 41(1), 1–7 (1993).
[CrossRef]

Rai, V.

M. S. Sodha, V. Rai, M. P. Verma, S. Konar, K. P. Maheshwari, “Underwater optical generation of sound: oblique incidence,” Pramana J. Phys. 41(1), 1–7 (1993).
[CrossRef]

Sedov, L. V.

L. M. Lyamshev, L. V. Sedov, “Optical generation of sound in a liquid: thermal mechanism (review),” Sov. Phys. Acoust. 27(1), 4–18 (1981).

Sodha, M. S.

M. S. Sodha, V. Rai, M. P. Verma, S. Konar, K. P. Maheshwari, “Underwater optical generation of sound: oblique incidence,” Pramana J. Phys. 41(1), 1–7 (1993).
[CrossRef]

Verma, M. P.

M. S. Sodha, V. Rai, M. P. Verma, S. Konar, K. P. Maheshwari, “Underwater optical generation of sound: oblique incidence,” Pramana J. Phys. 41(1), 1–7 (1993).
[CrossRef]

Westervelt, P. J.

P. J. Westervelt, R. S. Larson, “Laser-excited broadside array,” J. Acoust. Soc. Am. 54, 121–122 (1973).
[CrossRef]

J. Acoust. Soc. Am. (2)

P. J. Westervelt, R. S. Larson, “Laser-excited broadside array,” J. Acoust. Soc. Am. 54, 121–122 (1973).
[CrossRef]

Y. H. Berthelot, “Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers,” J. Acoust. Soc. Am. 85, 1173–1181 (1989).
[CrossRef]

Philos. Mag. Ser. 5 (1)

A. G. Bell, “Upon the production of sound by radiant energy,” Philos. Mag. Ser. 5 11, 510 (1881).
[CrossRef]

Pramana J. Phys. (1)

M. S. Sodha, V. Rai, M. P. Verma, S. Konar, K. P. Maheshwari, “Underwater optical generation of sound: oblique incidence,” Pramana J. Phys. 41(1), 1–7 (1993).
[CrossRef]

Sov. Phys. Acoust. (1)

L. M. Lyamshev, L. V. Sedov, “Optical generation of sound in a liquid: thermal mechanism (review),” Sov. Phys. Acoust. 27(1), 4–18 (1981).

Other (2)

F. A. Blackmon, “Linear and non-linear opto-acoustic communication,” Ph.D. dissertation (University of Massachusetts, Dartmouth, Mass., 2003).

Laser Focus World Buyers Guide1999 (Penn Well, Tulsa, Oklahoma, 1999), Vol. 35(1).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Linear optoacoustic normal and oblique incidence geometry.

Fig. 2
Fig. 2

Linear optoacoustic test setup block diagram.

Fig. 3
Fig. 3

(a) Linear optoacoustic regime experimental sinusoidal pulse modulation temporal and spectral waveform results. (b) Linear optoacoustic regime experimental 2-FSK modulation temporal and spectral waveform results.

Fig. 4
Fig. 4

Multiple laser source array geometry.

Fig. 5
Fig. 5

(a) Mesh plot of range versus frequency and optical-absorption coefficient for θ = 00. (b) Mesh plot of range versus frequency and optical-absorption coefficient for θ = 750.

Fig. 6
Fig. 6

Simple FSK linear optoacoustic communication scheme.

Tables (6)

Tables Icon

Table 1 Linear Optoacoustic Regime Experimental and Simulation Resultsa

Tables Icon

Table 2 Optimum Range and Parameters Versus Vertical Observation Angle

Tables Icon

Table 3 Suboptimum Range and Parameters Versus Vertical Observation Angle

Tables Icon

Table 4 Suboptimum Range and Angle Parameter Seta

Tables Icon

Table 5 Practical Suboptimum Range and Angle Parameter Seta

Tables Icon

Table 6 M-ary FSK versus MFSK Modulation Comparisona

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

P ( r , ω ) = T I 0 β a 2 2 C p exp ( ikr ) r ω 2 τ μ 1 + ω 2 τ μ 2 × exp ( ω 2 τ a 2 / 4 ) I ( ω ) ( normal incidence ) ,
P ( r , ω ) = T K μ exp ( ikr ) exp { [ k 2 a 2 ( sin 2 θ sin 2 ϕ + cos 2 ψ sin 2 θ cos 2 ϕ + sin 2 ψ cos 2 θ ) ] / 4 } Δ Λ μ I ( ω ) ( oblique incidence ) ,
K = i μ β P 0 ω 4 π C p R ,
Λ μ = 2 sinh ( ξ ) 2 i σ cos θ cos ψ cosh ( ξ ) + 2 i σ sin ψ sin θ cos ϕ sinh ( ξ ) ,
ξ = k 2 a 2 sin 2 θ cos ϕ sin 2 ψ 8 ,
Δ = 1 2 i σ sin ψ sin θ cos ϕ + σ 2 ( cos 2 θ cos 2 ψ sin 2 ψ sin 2 θ cos 2 ϕ ) ,
I ( ω ) = I ( t ) exp ( i ω t ) d t ,
τ μ = cos θ μ c ,
τ a = a sin θ c ,
ψ = sin 1 ( n 1 n 2 sin θ i ) .
T = 1 [ n 2 cos ( i ) n 1 cos ( ψ ) n 2 cos ( i ) + n 1 cos ( ψ ) ] 2 ,
P ( r , ω ) = T I 0 β a 2 2 C p exp ( ikr ) r ω 2 τ μ 1 + ω 2 τ μ 2 I ( ω ) ( normal incidence ) ,
P ( r , ω ) = [ T K μ exp ( ikr ) Δ ] ( 2 i σ cos θ cos ψ μ ) I ( ω ) ( oblique incidence ) .
f = 1 2 π τ μ = μ c 2 π cos θ .
f = c ln ( 0.7071 ) π a sin θ .
| P ( r , ω ) | = K T μ r 2 σ | cos θ cos ψ | Ω ,
Ω = { [ 1 + σ 2 ( cos 2 θ cos 2 ψ sin 2 ψ cos 2 ϕ ) ] 2 + 4 σ 2 sin 2 θ sin 2 ψ cos 2 ϕ } 1 / 2 ,
| P ( r , ω ) | = ( | K | T μ r ) exp k 2 a 2 ( sin 2 θ sin 2 ϕ + cos 2 ψ sin 2 θ cos 2 ϕ + sin 2 ψ cos 2 θ 4 Ξ Ω ,
Ξ = { [ 2 cosh ( 2 ξ ) 2 ] σ 2 sin 2 ψ sin 2 θ cos ϕ sinh ( 2 ξ ) + 2 σ 2 cos 2 θ cos 2 ψ [ cosh ( 2 ξ ) + 1 ] + 2 σ 2 sin 2 ψ sin 2 θ cos 2 θ [ cosh ( 2 ξ ) 1 ] } 1 / 2 .
D ( θ , ϕ ) = exp k 2 a 2 ( sin 2 θ sin 2 ϕ + cos 2 ψ sin 2 θ cos 2 ϕ + sin 2 ψ cos 2 θ 4 Ξ Ω .
D ( θ , ϕ ) = 2 σ | cos θ cos ψ | Ω .
D thin ( θ ) = 2 σ | cos θ | 1 + σ 2 cos 2 θ .
θ MAX = cos 1 ( c μ / 2 π f )
Δ θ 3 dB = { cos 1 [ ( 2 1 ) μ k ] cos 1 [ ( 2 + 1 ) μ k ] } .
θ MAX = cos 1 ( 1 σ cos ψ ) ϕ = 0 0 ,
θ MAX cos 1 ( 2 sin 2 ψ σ 2 cos 4 ψ + 1 ) ϕ = 90 0 ,
P T ( R , ω ) = m = 0 M 1 P ( R m , ω ) = P single ( ω , θ ) m exp ( i k R m ) R m ,
P sin gle ( ω , θ ) = i μ ω β 4 π C p I ( ω ) I 0 { a 2 π exp [ ( k a sin θ 2 ) 2 ] } × ( 2 i k cos θ μ 2 + k 2 cos 2 θ ) ,
m exp ( i k R m ) R m 1 R m exp ( i k R m ) 1 R m = 0 M 1 exp [ i k ( R m d cos α ) ] exp ( ikR ) R m = 0 M 1 [ exp ( ikd ( cos α ) ] m = exp ( ikR ) R exp [ i ( M 1 ) χ / 2 ] × [ sin ( M χ / 2 ) sin ( χ / 2 ) ] ,
A GAIN ( M , f , d , α ) = | sin ( M χ / 2 ) sin ( χ / 2 ) | .
STF ( a , f , μ , θ i , θ i tilt , θ , ϕ , ψ , θ tilt , ϕ tilt , ψ tilt ) = FresnelFactor ( θ i tilt , ψ tilt ) FresnelFactor ( θ i , ψ ) D ( θ tilt , ϕ tilt , ψ tilt ) D ( θ , ϕ , ψ ) ,
P OA ( r ) P abs ( r ) P Noise = SNR ,
P OA ( r ) = β c P 0 4 π C p r ( μ k 2 cos θ μ 2 + k 2 cos 2 θ ) exp [ ( k a sin θ 2 ) 2 ] ,
P OA ( r ) = ( | K | T μ r ) exp k 2 a 2 ( sin 2 θ sin 2 ϕ + cos 2 ψ sin 2 θ cos 2 ϕ + sin 2 ψ cos 2 θ 4 Ξ { [ 1 + σ 2 ( cos 2 θ cos 2 ψ sin 2 ψ sin 2 θ cos 2 ϕ ) ] 2 + 4 σ 2 sin 2 ψ sin 2 θ cos 2 } 1 / 2 ,
P abs ( r ) = exp ( γ × r 8.7 ) , γ = ( f 1000 ) 2 [ 8 × 10 5 0.7 + ( f 1000 ) 2 + 0.04 6000 + ( f 1000 ) 2 ] ;
P Noise = 1 × 10 6 [ ( 10 NoiseSpectrumLevel 20 ) × ( 10 10 log Bandwidth 10 ) ] ,
γ × r 8.7 + ln ( r ) = ln ( SNR ) + ln [ P OA ( r ) r ] ln ( P noise ) .
MAX θ min θ max range = func ( θ i , θ , μ ( λ ) , f , a , sea state , BW ) .

Metrics