Abstract

Marine sunphotometer measurements collected aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment—Asia (ACE-Asia) are used to evaluate the ability of complementary instrumentation to obtain the best possible estimates of aerosol optical thickness and Ångstrom exponent from ships at sea. A wide range of aerosol conditions, including clean maritime conditions and highly polluted coastal environments, were encountered during the ACE-Asia cruise. The results of this study suggest that shipboard hand-held sunphotometers and fast-rotating shadow-band radiometers (FRSRs) yield similar measurements and uncertainties if proper measurement protocols are used and if the instruments are properly calibrated. The automated FRSR has significantly better temporal resolution (2 min) than the hand-held sunphotometers when standard measurement protocols are used, so it more faithfully represents the variability of the local aerosol structure in polluted regions. Conversely, results suggest that the hand-held sunphotometers may perform better in clean, maritime air masses for unknown reasons. Results also show that the statistical distribution of the Ångstrom exponent measurements is different when the distributions from hand-held sunphotometers are compared with those from the FRSR and that the differences may arise from a combination of factors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. National Research Council, Aerosol Radiative Forcing and Climatic Change (National Academy Press, 1996).
  2. R. B. Husar, J. M. Prospero, L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness product,” J. Geophys. Res. 102, 16,889–16,909 (1997).
    [CrossRef]
  3. M. A. Wetzel, L. L. Stowe, “Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing,” J. Geophys. Res. 104, 31,287–31,299 (1999).
    [CrossRef]
  4. M. D. Chou, P. K. Chan, M. Wang, “Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties,” J. Atmos. Sci. 59, 748–757 (2002).
    [CrossRef]
  5. L. L. Stowe, H. Jacobowitz, G. Ohring, K. R. Knapp, N. R. Nalli, “The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analysis and evaluations,” J. Climate 15, 1243–1260 (2002).
    [CrossRef]
  6. S. A. Christopher, J. Zhang, “Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans,” Geophys. Res. Lett. 29, 1859–1863 (2002).
    [CrossRef]
  7. G. S. Fargion, J. L. Mueller, “Ocean optics protocols for satellite ocean color sensor validation: revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  8. A. K. Ångström, “Techniques for determining the turbidity of the atmosphere,” Tellus 2, 214–223 (1961).
    [CrossRef]
  9. A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
    [CrossRef]
  10. J. N. Porter, M. A. Miller, C. Motell, C. Pietras, “Use of hand-held sun photometers for measurements of aerosol optical thickness at sea,” J. Atmos. Ocean. Tech. 18, 765–774 (2001).
    [CrossRef]
  11. M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
    [CrossRef]
  12. P.-Y. Deschamps, B. Fougnie, P. Lecomte, C. Verwaerde, “SIMBAD: a field radiometer for satellite ocean-color validation,” Appl. Opt. 43, 4055–4069 (2004).
    [CrossRef] [PubMed]
  13. M. R. Reynolds, M. A. Miller, M. J. Bartholomew, “A fast-rotating, spectral shadowband radiometer for marine applications,” J. Atmos. Ocean. Tech. 18, 200–214 (2001).
    [CrossRef]
  14. M. A. Miller, M. J. Bartholomew, R. M. Reynolds, “The accuracy of marine shadow-band measurements of aerosol optical thickness and Ångström exponent,” J. Atmos. Ocean. Tech. 21, 397–410 (2004).
    [CrossRef]
  15. K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
    [CrossRef]
  16. R. R. Draxler, “Hybrid sigle-particle Lagrangian integrated trajectories (HY-SPLIT): Version 3.0,” (National Oceanic and Atmospheric Administration, Silver Spring, MD., 1992).
  17. K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
    [CrossRef]
  18. C. Pietras, G. S. Fargion, “Sun-pointing-error correction for sea deployment of the MICROTOPS II handheld sun photometer,” J. Atmos. Ocean. Tech. 20, 767–771 (2003).
    [CrossRef]
  19. G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
    [CrossRef]
  20. B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
    [CrossRef]
  21. C. N. Long, D. L. Slater, T. Tooman, “Total sky imager model 880 status and testing results,” (U.S. Government Printing Office, 2001), p. 36.
  22. A. Ignatov, “Sensitivity and information content of aerosol retrievals from AVHRR: radiometric factors,” Appl. Opt. 46, 991–1011 (2002).
    [CrossRef]
  23. N. T. O’Neill, A. Ignatov, B. Holben, T. Eck, “The log-normal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sun photometer data,” Geophys. Res. Lett. 27, 3333–3336 (2000).
    [CrossRef]
  24. A. Ignatov, L. Stowe, “Aerosol retrievals from individual AVHRR channels. II. Quality control, probability distribution functions, information content, and consistency checks of retrievals,” J. Atmos. Sci. 59, 335–362 (2001).
    [CrossRef]
  25. G. Fargion, R. Barnes, C. McClain, “In Situ aerosol optical thickness collected by the SIMBIOS program(1997–2000): Protocols, and data QC and analysis,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2001), pp. 11–21.

2004 (3)

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

M. A. Miller, M. J. Bartholomew, R. M. Reynolds, “The accuracy of marine shadow-band measurements of aerosol optical thickness and Ångström exponent,” J. Atmos. Ocean. Tech. 21, 397–410 (2004).
[CrossRef]

P.-Y. Deschamps, B. Fougnie, P. Lecomte, C. Verwaerde, “SIMBAD: a field radiometer for satellite ocean-color validation,” Appl. Opt. 43, 4055–4069 (2004).
[CrossRef] [PubMed]

2003 (3)

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

C. Pietras, G. S. Fargion, “Sun-pointing-error correction for sea deployment of the MICROTOPS II handheld sun photometer,” J. Atmos. Ocean. Tech. 20, 767–771 (2003).
[CrossRef]

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

2002 (4)

A. Ignatov, “Sensitivity and information content of aerosol retrievals from AVHRR: radiometric factors,” Appl. Opt. 46, 991–1011 (2002).
[CrossRef]

M. D. Chou, P. K. Chan, M. Wang, “Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties,” J. Atmos. Sci. 59, 748–757 (2002).
[CrossRef]

L. L. Stowe, H. Jacobowitz, G. Ohring, K. R. Knapp, N. R. Nalli, “The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analysis and evaluations,” J. Climate 15, 1243–1260 (2002).
[CrossRef]

S. A. Christopher, J. Zhang, “Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans,” Geophys. Res. Lett. 29, 1859–1863 (2002).
[CrossRef]

2001 (4)

J. N. Porter, M. A. Miller, C. Motell, C. Pietras, “Use of hand-held sun photometers for measurements of aerosol optical thickness at sea,” J. Atmos. Ocean. Tech. 18, 765–774 (2001).
[CrossRef]

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

M. R. Reynolds, M. A. Miller, M. J. Bartholomew, “A fast-rotating, spectral shadowband radiometer for marine applications,” J. Atmos. Ocean. Tech. 18, 200–214 (2001).
[CrossRef]

A. Ignatov, L. Stowe, “Aerosol retrievals from individual AVHRR channels. II. Quality control, probability distribution functions, information content, and consistency checks of retrievals,” J. Atmos. Sci. 59, 335–362 (2001).
[CrossRef]

2000 (1)

N. T. O’Neill, A. Ignatov, B. Holben, T. Eck, “The log-normal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sun photometer data,” Geophys. Res. Lett. 27, 3333–3336 (2000).
[CrossRef]

1999 (1)

M. A. Wetzel, L. L. Stowe, “Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing,” J. Geophys. Res. 104, 31,287–31,299 (1999).
[CrossRef]

1998 (1)

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

1997 (1)

R. B. Husar, J. M. Prospero, L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness product,” J. Geophys. Res. 102, 16,889–16,909 (1997).
[CrossRef]

1964 (1)

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
[CrossRef]

1961 (1)

A. K. Ångström, “Techniques for determining the turbidity of the atmosphere,” Tellus 2, 214–223 (1961).
[CrossRef]

Anderson, S. E.

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

Ångström, A.

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
[CrossRef]

Ångström, A. K.

A. K. Ångström, “Techniques for determining the turbidity of the atmosphere,” Tellus 2, 214–223 (1961).
[CrossRef]

Baker, A.

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

Balch, W. M.

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

Barnes, R.

G. Fargion, R. Barnes, C. McClain, “In Situ aerosol optical thickness collected by the SIMBIOS program(1997–2000): Protocols, and data QC and analysis,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2001), pp. 11–21.

Bartholomew, M. J.

M. A. Miller, M. J. Bartholomew, R. M. Reynolds, “The accuracy of marine shadow-band measurements of aerosol optical thickness and Ångström exponent,” J. Atmos. Ocean. Tech. 21, 397–410 (2004).
[CrossRef]

M. R. Reynolds, M. A. Miller, M. J. Bartholomew, “A fast-rotating, spectral shadowband radiometer for marine applications,” J. Atmos. Ocean. Tech. 18, 200–214 (2001).
[CrossRef]

Bates, D.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Carrico, C. M.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Chan, P. K.

M. D. Chou, P. K. Chan, M. Wang, “Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties,” J. Atmos. Sci. 59, 748–757 (2002).
[CrossRef]

Chou, M. D.

M. D. Chou, P. K. Chan, M. Wang, “Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties,” J. Atmos. Sci. 59, 748–757 (2002).
[CrossRef]

Christopher, S. A.

S. A. Christopher, J. Zhang, “Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans,” Geophys. Res. Lett. 29, 1859–1863 (2002).
[CrossRef]

Deschamps, P.-Y.

Draxler, R. R.

R. R. Draxler, “Hybrid sigle-particle Lagrangian integrated trajectories (HY-SPLIT): Version 3.0,” (National Oceanic and Atmospheric Administration, Silver Spring, MD., 1992).

Eck, T.

N. T. O’Neill, A. Ignatov, B. Holben, T. Eck, “The log-normal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sun photometer data,” Geophys. Res. Lett. 27, 3333–3336 (2000).
[CrossRef]

Eck, T. F.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Fargion, G.

G. Fargion, R. Barnes, C. McClain, “In Situ aerosol optical thickness collected by the SIMBIOS program(1997–2000): Protocols, and data QC and analysis,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2001), pp. 11–21.

Fargion, G. S.

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

C. Pietras, G. S. Fargion, “Sun-pointing-error correction for sea deployment of the MICROTOPS II handheld sun photometer,” J. Atmos. Ocean. Tech. 20, 767–771 (2003).
[CrossRef]

G. S. Fargion, J. L. Mueller, “Ocean optics protocols for satellite ocean color sensor validation: revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Flatau, M. K.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Flatau, P. J.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Fougnie, B.

Foujols, T.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Frouin, R.

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

Gillotay, D.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Hagerup, S.

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

Hersé, M.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Holben, B.

N. T. O’Neill, A. Ignatov, B. Holben, T. Eck, “The log-normal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sun photometer data,” Geophys. Res. Lett. 27, 3333–3336 (2000).
[CrossRef]

Holben, B. N.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Husar, R. B.

R. B. Husar, J. M. Prospero, L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness product,” J. Geophys. Res. 102, 16,889–16,909 (1997).
[CrossRef]

Ignatov, A.

A. Ignatov, “Sensitivity and information content of aerosol retrievals from AVHRR: radiometric factors,” Appl. Opt. 46, 991–1011 (2002).
[CrossRef]

A. Ignatov, L. Stowe, “Aerosol retrievals from individual AVHRR channels. II. Quality control, probability distribution functions, information content, and consistency checks of retrievals,” J. Atmos. Sci. 59, 335–362 (2001).
[CrossRef]

N. T. O’Neill, A. Ignatov, B. Holben, T. Eck, “The log-normal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sun photometer data,” Geophys. Res. Lett. 27, 3333–3336 (2000).
[CrossRef]

Jacobowitz, H.

L. L. Stowe, H. Jacobowitz, G. Ohring, K. R. Knapp, N. R. Nalli, “The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analysis and evaluations,” J. Climate 15, 1243–1260 (2002).
[CrossRef]

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Kaufman, Y.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Kia, J.

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

Knapp, K. R.

L. L. Stowe, H. Jacobowitz, G. Ohring, K. R. Knapp, N. R. Nalli, “The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analysis and evaluations,” J. Climate 15, 1243–1260 (2002).
[CrossRef]

Knobelspiesse, K. D.

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

Labs, D.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Lecomte, P.

Liu, M.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Long, C. N.

C. N. Long, D. L. Slater, T. Tooman, “Total sky imager model 880 status and testing results,” (U.S. Government Printing Office, 2001), p. 36.

Mandel, H.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Markowitz, K. M.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

McClain, C.

G. Fargion, R. Barnes, C. McClain, “In Situ aerosol optical thickness collected by the SIMBIOS program(1997–2000): Protocols, and data QC and analysis,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2001), pp. 11–21.

Miller, M. A.

M. A. Miller, M. J. Bartholomew, R. M. Reynolds, “The accuracy of marine shadow-band measurements of aerosol optical thickness and Ångström exponent,” J. Atmos. Ocean. Tech. 21, 397–410 (2004).
[CrossRef]

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

M. R. Reynolds, M. A. Miller, M. J. Bartholomew, “A fast-rotating, spectral shadowband radiometer for marine applications,” J. Atmos. Ocean. Tech. 18, 200–214 (2001).
[CrossRef]

J. N. Porter, M. A. Miller, C. Motell, C. Pietras, “Use of hand-held sun photometers for measurements of aerosol optical thickness at sea,” J. Atmos. Ocean. Tech. 18, 765–774 (2001).
[CrossRef]

Mims, F. M.

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

Morys, M.

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

Motell, C.

J. N. Porter, M. A. Miller, C. Motell, C. Pietras, “Use of hand-held sun photometers for measurements of aerosol optical thickness at sea,” J. Atmos. Ocean. Tech. 18, 765–774 (2001).
[CrossRef]

Mueller, J. L.

G. S. Fargion, J. L. Mueller, “Ocean optics protocols for satellite ocean color sensor validation: revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Nakajima, T.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Nalli, N. R.

L. L. Stowe, H. Jacobowitz, G. Ohring, K. R. Knapp, N. R. Nalli, “The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analysis and evaluations,” J. Climate 15, 1243–1260 (2002).
[CrossRef]

O’Neill, N. T.

N. T. O’Neill, A. Ignatov, B. Holben, T. Eck, “The log-normal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sun photometer data,” Geophys. Res. Lett. 27, 3333–3336 (2000).
[CrossRef]

Ohring, G.

L. L. Stowe, H. Jacobowitz, G. Ohring, K. R. Knapp, N. R. Nalli, “The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analysis and evaluations,” J. Climate 15, 1243–1260 (2002).
[CrossRef]

Peetermans, W.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Pietras, C.

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

C. Pietras, G. S. Fargion, “Sun-pointing-error correction for sea deployment of the MICROTOPS II handheld sun photometer,” J. Atmos. Ocean. Tech. 20, 767–771 (2003).
[CrossRef]

J. N. Porter, M. A. Miller, C. Motell, C. Pietras, “Use of hand-held sun photometers for measurements of aerosol optical thickness at sea,” J. Atmos. Ocean. Tech. 18, 765–774 (2001).
[CrossRef]

Porter, J. N.

J. N. Porter, M. A. Miller, C. Motell, C. Pietras, “Use of hand-held sun photometers for measurements of aerosol optical thickness at sea,” J. Atmos. Ocean. Tech. 18, 765–774 (2001).
[CrossRef]

Prospero, J. M.

R. B. Husar, J. M. Prospero, L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness product,” J. Geophys. Res. 102, 16,889–16,909 (1997).
[CrossRef]

Quinn, P. K.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Reynolds, M. R.

M. R. Reynolds, M. A. Miller, M. J. Bartholomew, “A fast-rotating, spectral shadowband radiometer for marine applications,” J. Atmos. Ocean. Tech. 18, 200–214 (2001).
[CrossRef]

Reynolds, R. M.

M. A. Miller, M. J. Bartholomew, R. M. Reynolds, “The accuracy of marine shadow-band measurements of aerosol optical thickness and Ångström exponent,” J. Atmos. Ocean. Tech. 21, 397–410 (2004).
[CrossRef]

Rood, M.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Setzer, A.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Simon, P. C.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Slater, D. L.

C. N. Long, D. L. Slater, T. Tooman, “Total sky imager model 880 status and testing results,” (U.S. Government Printing Office, 2001), p. 36.

Slutsker, I.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Smirnov, A.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Stowe, L.

A. Ignatov, L. Stowe, “Aerosol retrievals from individual AVHRR channels. II. Quality control, probability distribution functions, information content, and consistency checks of retrievals,” J. Atmos. Sci. 59, 335–362 (2001).
[CrossRef]

Stowe, L. L.

L. L. Stowe, H. Jacobowitz, G. Ohring, K. R. Knapp, N. R. Nalli, “The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analysis and evaluations,” J. Climate 15, 1243–1260 (2002).
[CrossRef]

M. A. Wetzel, L. L. Stowe, “Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing,” J. Geophys. Res. 104, 31,287–31,299 (1999).
[CrossRef]

R. B. Husar, J. M. Prospero, L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness product,” J. Geophys. Res. 102, 16,889–16,909 (1997).
[CrossRef]

Subramaniam, A.

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

Tanre, N. D.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Thuillier, G.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Tooman, T.

C. N. Long, D. L. Slater, T. Tooman, “Total sky imager model 880 status and testing results,” (U.S. Government Printing Office, 2001), p. 36.

Vermote, E.

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Verwaerde, C.

Vogelmann, A. M.

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Walkup, T.

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

Wang, M.

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

M. D. Chou, P. K. Chan, M. Wang, “Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties,” J. Atmos. Sci. 59, 748–757 (2002).
[CrossRef]

Wetzel, M. A.

M. A. Wetzel, L. L. Stowe, “Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing,” J. Geophys. Res. 104, 31,287–31,299 (1999).
[CrossRef]

Zhang, J.

S. A. Christopher, J. Zhang, “Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans,” Geophys. Res. Lett. 29, 1859–1863 (2002).
[CrossRef]

Appl. Opt. (2)

P.-Y. Deschamps, B. Fougnie, P. Lecomte, C. Verwaerde, “SIMBAD: a field radiometer for satellite ocean-color validation,” Appl. Opt. 43, 4055–4069 (2004).
[CrossRef] [PubMed]

A. Ignatov, “Sensitivity and information content of aerosol retrievals from AVHRR: radiometric factors,” Appl. Opt. 46, 991–1011 (2002).
[CrossRef]

Geophys. Res. Lett. (2)

N. T. O’Neill, A. Ignatov, B. Holben, T. Eck, “The log-normal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sun photometer data,” Geophys. Res. Lett. 27, 3333–3336 (2000).
[CrossRef]

S. A. Christopher, J. Zhang, “Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans,” Geophys. Res. Lett. 29, 1859–1863 (2002).
[CrossRef]

J. Atmos. Ocean. Tech. (4)

M. R. Reynolds, M. A. Miller, M. J. Bartholomew, “A fast-rotating, spectral shadowband radiometer for marine applications,” J. Atmos. Ocean. Tech. 18, 200–214 (2001).
[CrossRef]

M. A. Miller, M. J. Bartholomew, R. M. Reynolds, “The accuracy of marine shadow-band measurements of aerosol optical thickness and Ångström exponent,” J. Atmos. Ocean. Tech. 21, 397–410 (2004).
[CrossRef]

J. N. Porter, M. A. Miller, C. Motell, C. Pietras, “Use of hand-held sun photometers for measurements of aerosol optical thickness at sea,” J. Atmos. Ocean. Tech. 18, 765–774 (2001).
[CrossRef]

C. Pietras, G. S. Fargion, “Sun-pointing-error correction for sea deployment of the MICROTOPS II handheld sun photometer,” J. Atmos. Ocean. Tech. 20, 767–771 (2003).
[CrossRef]

J. Atmos. Sci. (2)

A. Ignatov, L. Stowe, “Aerosol retrievals from individual AVHRR channels. II. Quality control, probability distribution functions, information content, and consistency checks of retrievals,” J. Atmos. Sci. 59, 335–362 (2001).
[CrossRef]

M. D. Chou, P. K. Chan, M. Wang, “Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties,” J. Atmos. Sci. 59, 748–757 (2002).
[CrossRef]

J. Climate (1)

L. L. Stowe, H. Jacobowitz, G. Ohring, K. R. Knapp, N. R. Nalli, “The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analysis and evaluations,” J. Climate 15, 1243–1260 (2002).
[CrossRef]

J. Geophys. Res. (4)

R. B. Husar, J. M. Prospero, L. L. Stowe, “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness product,” J. Geophys. Res. 102, 16,889–16,909 (1997).
[CrossRef]

M. A. Wetzel, L. L. Stowe, “Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing,” J. Geophys. Res. 104, 31,287–31,299 (1999).
[CrossRef]

M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer,” J. Geophys. Res. 106, 14,573–14,582 (2001).
[CrossRef]

K. M. Markowitz, P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, M. Rood, “Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective,” J. Geophys. Res. 108, 8662–8673 (2003).
[CrossRef]

Rem. Sens. Environ. (1)

B. N. Holben, T. F. Eck, I. Slutsker, N. D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Remote Sens. Environ. (1)

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, W. M. Balch, “Maritime aerosol optical properties measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004).
[CrossRef]

Solar Phys. (1)

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Solar Phys. 214, 1–22 (2003).
[CrossRef]

Tellus (2)

A. K. Ångström, “Techniques for determining the turbidity of the atmosphere,” Tellus 2, 214–223 (1961).
[CrossRef]

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
[CrossRef]

Other (5)

G. S. Fargion, J. L. Mueller, “Ocean optics protocols for satellite ocean color sensor validation: revision 2,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

National Research Council, Aerosol Radiative Forcing and Climatic Change (National Academy Press, 1996).

R. R. Draxler, “Hybrid sigle-particle Lagrangian integrated trajectories (HY-SPLIT): Version 3.0,” (National Oceanic and Atmospheric Administration, Silver Spring, MD., 1992).

C. N. Long, D. L. Slater, T. Tooman, “Total sky imager model 880 status and testing results,” (U.S. Government Printing Office, 2001), p. 36.

G. Fargion, R. Barnes, C. McClain, “In Situ aerosol optical thickness collected by the SIMBIOS program(1997–2000): Protocols, and data QC and analysis,” (NASA Goddard Space Flight Center, Greenbelt, Md., 2001), pp. 11–21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cruise trajectory of the R/V Ronald H. Brown during the ACE-Asia cruise. Latitudes and longitudes are indicated, and the cruise trajectory is color coded according to the type of aerosol suggested by a trajectory analysis. The types of aerosol present are given in the accompanying legend. (a) The complete cruise trajectory, (b) a close-up of the cruise trajectory in the vicinity of Japan.

Fig. 2
Fig. 2

Comparison plots of τλA at the specified wavelength for the hand-held marine sunphotometers. Each data point represents a direct comparison between the two instruments during 15-min windows, and the instruments are never more than 83.5 m apart. The total number of comparison points is indicated beneath each figure, along with the percentage that agreed within uncertainty: (a) Simbad versus SimbadA 490-nm channels, (b) SimbadA 490-nm versus SIMBIOS Microtops 500-nm channels, (c) SIMBIOS Microtops 500-nm channel versus Simbad 490-nm channel. AOT, aerosol optical thickness.

Fig. 3
Fig. 3

Same as Fig. 2 but for α.

Fig. 4
Fig. 4

Comparison plots of the ratio of α for the instruments listed on the y axis against the average τλA (490- and 500-nm center wavelengths averaged together). Each data point represents a direct comparison between the two instruments during 15-min windows. The total number of comparison points is indicated beneath each figure, along with the percentage that agreed within uncertainty: (a) Simbad–SimbadA α ratio, (b) SimbadA–SIMBIOS Microtops α ratio, (c) SIMBIOS Microtops–Simbad α ratio.

Fig. 5
Fig. 5

Comparison plots of τλA at the specified wavelength for the FRSR and hand-held marine sunphotometers. Each data point represents a direct comparison between the two instruments during 15-min windows. The total number of comparison points is indicated beneath each figure, along with the percentage that agreed within uncertainty. (a) Simbad 490-nm versus FRSR 500-nm channel, (b) SIMBIOS Microtops 500-nm channel versus FRSR 500-nm channel, (c) Simbad 490-nm channel versus FRSR 500-nm channel.

Fig. 6
Fig. 6

(a) Time series of voltage counts from the FRSR for each sweep that passed quality control during a 2-min sampling window. These individual sweeps are used to determine the direct-normal irradiance. Red circles, voltages selected by the FRSR processing as representative of the edge voltage.13,14 Visible sky images from the TSI for one of the individual sweeps from (a) the Northern Pacific Ocean in a clean air mass (τλA = 0.08 at 500 nm) and (b) the polluted air mass above the Sea of Japan (τλA = 0.98 at 500 nm).

Fig. 7
Fig. 7

Comparison plots of α at the specified wavelength for the FRSR and the hand-held marine sunphotometers. Each data point represents a direct comparison between the two instruments during 15-min windows: FRSR versus (a) Simbad, (b) SIMBIOS Microtops, and (c) SimbadA.

Fig. 8
Fig. 8

Comparison plots of the ratio of α for the instruments listed on the y axis against the average τλA (490- and 500-nm center wavelengths averaged together). Each data point represents a direct comparison between the two instruments during 15-min windows. The total number of comparison points is indicated beneath each figure, along with the percentage that agreed within uncertainty. (a) Simbad–SimbadA α ratio, (b) SimbadA–SIMBIOS Microtops α ratio, (c) SIMBIOS Microtops–Simbad α ratio.

Fig. 9
Fig. 9

(a) Time series of τλA for 29 March 2001 from the FRSR (blue squares), Microtops with custom algorithm (red diamonds), Simbad (green pluses), SimbadA (blue asterisks), and Microtops without the custom algorithm (black triangles). Blue circles with vertical lines represent typical uncertainties for these measurements: (b) as in (a) but for 9–10 April 2001; (c) as in (a) but for α; (d) as in (b) but for α.

Fig. 10
Fig. 10

(a) Plot of τλA at 870 nm classified by trajectory-based air mass type. The air masses are plotted according to the color codes in Fig. 1 and with different symbols. (b)Time series of the geometric statistics of cloud-filtered τλA at 500 nm for a 1-h window near local noon. The whisker plots show the geometric mean (center bar) and the geometric standard deviations (upper and lower bounds of box), and the lines above and below represent the maximum and minimum observed values: (c) as in (b) but for 670 nm; (d) as in (b) but for 870 nm; (e) α for the experiment period.

Fig. 11
Fig. 11

Histograms of τλA and α for the R/V Ronald H. Brown cruise during the ACE-Asia. Dashed lines are histograms of the hand-held data; solid lines, of the FRSR data. The bin width for τλA is 0.05, and the bin width for α is 0.1. (a) τ490–500A (490- and 500-nm center wavelengths averaged together), (b) τ870A, (c) α computed by fitting of a line through all measurements of τλA, (d) α computed by use of only two bands (τ490–500A and τ870A).

Tables (4)

Tables Icon

Table 1 Sunphotometers Deployed on the R/V Ronald H. Brown during ACE-Asia

Tables Icon

Table 2 Calibration Information for Hand-Held Radiometers Used in This Study

Tables Icon

Table 3 Statistical Summary of Instrument Intercomparisonsa

Tables Icon

Table 4 Percentage of ACE-Asia Concurrent Measurements That Fall Within Calculated Uncertaintiesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2.0 τ ( i ) 0.005 | t ( i 5 ) t ( i + 5 ) | < 2 hours μ τ window < 0.05 < | τ ( i ) μ τ window | .
σ α 2 = [ ln ( λ 1 / λ 2 ) ] 2 Band Separation [ ( σ τ λ 1 / τ λ 1 ) 2 + ( σ τ λ 2 / τ λ 2 ) 2 ] AOT ,

Metrics