Abstract

A new method of fabricating multilayer optical coatings used at terahertz frequencies has been developed. Using plasma-enhanced chemical-vapor deposition, a multilayer antireflection coating for germanium optics at terahertz frequencies was fabricated. The coating consists of amorphous silicon and silicon-oxide layers. The transmittance and structure of the coating were experimentally investigated. The transmittance spectrum of the coating on the Ge substrate shows a wideband antireflection behavior in the 40–120 cm−1 region.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasmaenhanced chemical vapor deposition films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
    [CrossRef]
  2. A. J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264–266 (2000).
    [CrossRef]
  3. J. Shao, J. A. Dobrowolski, “Multilayer interference filters for the far-infrared and submillimeter regions,” Appl. Opt. 32, 2361–2370 (1993).
    [CrossRef] [PubMed]
  4. K. Kawase, N. Hiromoto, “Terahertz-wave antireflection coating on Ge and GaAs with fused quartz,” Appl. Opt. 37, 1862–1866 (1998).
    [CrossRef]
  5. I. Hosako, “Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics,” Appl. Opt. 42, 4045–4048 (2003).
    [CrossRef] [PubMed]
  6. K. R. Armstrong, F. J. Low, “Far-infrared filters utilizing small particle scattering and antireflection coatings,” Appl. Opt. 13, 425–430 (1974).
    [CrossRef] [PubMed]
  7. E. D. Palik, ed.,Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 465–478, 547–569, 749–763.
  8. M. H. Brodsky, A. Lurio, “Infrared vibrational spectra of amorphous Si and Ge,” Phys. Rev. B 9, 1646–1651 (1974).
    [CrossRef]
  9. E. C. Freeman, W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20, 716–728 (1974).
    [CrossRef]
  10. H. Hanagata, T. Suzuki, K. Yanagida, H. Igarashi, “Method and device for formation of ceramic film,” Japanese patent abstract JP06-280025, A (1994).
  11. H. A. Macleod, “Thin-film optical coating design,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, 1995), pp. 1–39.

2003

2000

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

1998

1996

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasmaenhanced chemical vapor deposition films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

1993

1974

K. R. Armstrong, F. J. Low, “Far-infrared filters utilizing small particle scattering and antireflection coatings,” Appl. Opt. 13, 425–430 (1974).
[CrossRef] [PubMed]

M. H. Brodsky, A. Lurio, “Infrared vibrational spectra of amorphous Si and Ge,” Phys. Rev. B 9, 1646–1651 (1974).
[CrossRef]

E. C. Freeman, W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20, 716–728 (1974).
[CrossRef]

Armstrong, K. R.

Brodsky, M. H.

M. H. Brodsky, A. Lurio, “Infrared vibrational spectra of amorphous Si and Ge,” Phys. Rev. B 9, 1646–1651 (1974).
[CrossRef]

DeCrosta, D. A.

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasmaenhanced chemical vapor deposition films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

Dobrowolski, J. A.

Freeman, E. C.

E. C. Freeman, W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20, 716–728 (1974).
[CrossRef]

Gatesman, A. J.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Hackenberg, J. J.

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasmaenhanced chemical vapor deposition films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

Hanagata, H.

H. Hanagata, T. Suzuki, K. Yanagida, H. Igarashi, “Method and device for formation of ceramic film,” Japanese patent abstract JP06-280025, A (1994).

Hiromoto, N.

Hosako, I.

Igarashi, H.

H. Hanagata, T. Suzuki, K. Yanagida, H. Igarashi, “Method and device for formation of ceramic film,” Japanese patent abstract JP06-280025, A (1994).

Ji, M.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Kawase, K.

Linn, J. H.

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasmaenhanced chemical vapor deposition films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

Low, F. J.

Lurio, A.

M. H. Brodsky, A. Lurio, “Infrared vibrational spectra of amorphous Si and Ge,” Phys. Rev. B 9, 1646–1651 (1974).
[CrossRef]

Macleod, H. A.

H. A. Macleod, “Thin-film optical coating design,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, 1995), pp. 1–39.

Musante, C.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Paul, W.

E. C. Freeman, W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20, 716–728 (1974).
[CrossRef]

Shao, J.

Suzuki, T.

H. Hanagata, T. Suzuki, K. Yanagida, H. Igarashi, “Method and device for formation of ceramic film,” Japanese patent abstract JP06-280025, A (1994).

Waldman, J.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Yanagida, K.

H. Hanagata, T. Suzuki, K. Yanagida, H. Igarashi, “Method and device for formation of ceramic film,” Japanese patent abstract JP06-280025, A (1994).

Yngvesson, S.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Appl. Opt.

IEEE Microwave Guided Wave Lett.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

J. Electrochem. Soc.

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasmaenhanced chemical vapor deposition films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

Phys. Rev. B

M. H. Brodsky, A. Lurio, “Infrared vibrational spectra of amorphous Si and Ge,” Phys. Rev. B 9, 1646–1651 (1974).
[CrossRef]

E. C. Freeman, W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20, 716–728 (1974).
[CrossRef]

Other

H. Hanagata, T. Suzuki, K. Yanagida, H. Igarashi, “Method and device for formation of ceramic film,” Japanese patent abstract JP06-280025, A (1994).

H. A. Macleod, “Thin-film optical coating design,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, 1995), pp. 1–39.

E. D. Palik, ed.,Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 465–478, 547–569, 749–763.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of plasma-enhanced CVD.

Fig. 2
Fig. 2

Optical constants for Si and SiO2.

Fig. 3
Fig. 3

Cross-sectional SEM viewgraph of four-layer AR coating on Ge substrate. Superimposed lines show the characteristic x-ray strength for each element in the EDS analysis. The horizontal line represents the line segment where the electron beam scanned for the EDS analysis.

Fig. 4
Fig. 4

Measured transmittance of obtained structure (solid curve with error bars). Calculated transmittances for designed structure: Ge substrate/Si 7 µm/SiO2 3 µm/Si 2 µm/SiO2 11 µm (filled circles), Ge substrate/Si 6.8 µm/SiO2 3.2 µm/Si 1.8 µm/ SiO2 11.8 µm (triangles), and Ge substrate/SiO0.26 6.8 µm/SiO1.36 3.2 µm/SiO0.53 1.8 µm/SiO1.49 11.8 µm (filled squares). Calculations were done using a standard matrix method.11

Metrics