Abstract

We have investigated the alignment of a liquid crystal whose orientation is controlled by photoisomerization reaction for use in developing optical devices to improve beam quality. A glass window of a liquid-crystal cell that is coated with poly(vinyl alcohol) doped with azo dye was illuminated with a Hg lamp. We confirmed the dependence of the spatially controlled alignment direction of a liquid crystal on the irradiation time of this ultraviolet light. The new azo dye used in this study substantially reduced the illumination energy density required for aligning liquid-crystal molecules. We have demonstrated the control of polarization and successfully fabricated a serrated apodizing aperture and a soft aperture.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
    [CrossRef]
  2. W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
    [CrossRef]
  3. W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
    [CrossRef]
  4. C. Jones, S. Day, “Shedding light on alignment,” Nature (London) 351, 15 (1991).
    [CrossRef]
  5. J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Opt. 62, 4100–4108 (1987).
  6. K. Ichimura, Y. Suzuki, T. Seki, A. Hosaki, K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214–1216 (1988).
    [CrossRef]
  7. M. SchadtK, K. Schmitt, V. Kozinkov, V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
    [CrossRef]
  8. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, K. J. Skerrett, “Liquid-crystal laser optics: design, fabrication, and performance,” J. Opt. Soc. Am. B 5, 1962–1979 (1988).
    [CrossRef]
  9. K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
    [CrossRef]
  10. K. Sueda, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, “Speckle suppression of laser light using liquid crystals aligned by photoisomerization of dye molecules,” Appl. Phys. Lett. 102, 5111–5113 (2002).
    [CrossRef]
  11. J. M. Auerbach, V. P. Karpenko, “Serrated-aperture apodizers for high-energy laser systems,” Appl. Opt. 33, 3179–3183 (1994).
    [CrossRef] [PubMed]
  12. T. Bontoux, T. Saiki, T. Kanabe, H. Fujita, M. Nakatsuka, “Study of serrated aperture for a Cassegrain booster amplifier,” Opt. Rev. 5, 234–241 (1998).
    [CrossRef]

2002 (1)

K. Sueda, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, “Speckle suppression of laser light using liquid crystals aligned by photoisomerization of dye molecules,” Appl. Phys. Lett. 102, 5111–5113 (2002).
[CrossRef]

1998 (1)

T. Bontoux, T. Saiki, T. Kanabe, H. Fujita, M. Nakatsuka, “Study of serrated aperture for a Cassegrain booster amplifier,” Opt. Rev. 5, 234–241 (1998).
[CrossRef]

1994 (1)

1993 (1)

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

1992 (1)

M. SchadtK, K. Schmitt, V. Kozinkov, V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

1991 (2)

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

C. Jones, S. Day, “Shedding light on alignment,” Nature (London) 351, 15 (1991).
[CrossRef]

1988 (2)

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, K. J. Skerrett, “Liquid-crystal laser optics: design, fabrication, and performance,” J. Opt. Soc. Am. B 5, 1962–1979 (1988).
[CrossRef]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosaki, K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214–1216 (1988).
[CrossRef]

1987 (1)

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Opt. 62, 4100–4108 (1987).

1981 (1)

W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

1974 (1)

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Aoki, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosaki, K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214–1216 (1988).
[CrossRef]

Auerbach, J. M.

Bliss, E. S.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Bontoux, T.

T. Bontoux, T. Saiki, T. Kanabe, H. Fujita, M. Nakatsuka, “Study of serrated aperture for a Cassegrain booster amplifier,” Opt. Rev. 5, 234–241 (1998).
[CrossRef]

Cerqua, K. A.

Chigrinov, V.

M. SchadtK, K. Schmitt, V. Kozinkov, V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Day, S.

C. Jones, S. Day, “Shedding light on alignment,” Nature (London) 351, 15 (1991).
[CrossRef]

Erkkila, J. H.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Fujita, H.

T. Bontoux, T. Saiki, T. Kanabe, H. Fujita, M. Nakatsuka, “Study of serrated aperture for a Cassegrain booster amplifier,” Opt. Rev. 5, 234–241 (1998).
[CrossRef]

Geary, J. M.

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Opt. 62, 4100–4108 (1987).

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

Glass, A. J.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Goodby, J. W.

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Opt. 62, 4100–4108 (1987).

Guardalben, M. J.

Holzrichter, J. F.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Hosaki, A.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosaki, K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214–1216 (1988).
[CrossRef]

Ichimura, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosaki, K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214–1216 (1988).
[CrossRef]

Jacobs, S. D.

Jitsuno, T.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Jones, C.

C. Jones, S. Day, “Shedding light on alignment,” Nature (London) 351, 15 (1991).
[CrossRef]

Kanabe, T.

T. Bontoux, T. Saiki, T. Kanabe, H. Fujita, M. Nakatsuka, “Study of serrated aperture for a Cassegrain booster amplifier,” Opt. Rev. 5, 234–241 (1998).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Karpenko, V. P.

Kmetz, A. R.

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Opt. 62, 4100–4108 (1987).

Kozinkov, V.

M. SchadtK, K. Schmitt, V. Kozinkov, V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Lowdermilk, W.

W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Marshall, K. L.

Milam, D.

W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Miyanaga, N.

K. Sueda, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, “Speckle suppression of laser light using liquid crystals aligned by photoisomerization of dye molecules,” Appl. Phys. Lett. 102, 5111–5113 (2002).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Nakai, S.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Nakatsuka, M.

K. Sueda, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, “Speckle suppression of laser light using liquid crystals aligned by photoisomerization of dye molecules,” Appl. Phys. Lett. 102, 5111–5113 (2002).
[CrossRef]

T. Bontoux, T. Saiki, T. Kanabe, H. Fujita, M. Nakatsuka, “Study of serrated aperture for a Cassegrain booster amplifier,” Opt. Rev. 5, 234–241 (1998).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Patel, J. S.

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Opt. 62, 4100–4108 (1987).

Saiki, T.

T. Bontoux, T. Saiki, T. Kanabe, H. Fujita, M. Nakatsuka, “Study of serrated aperture for a Cassegrain booster amplifier,” Opt. Rev. 5, 234–241 (1998).
[CrossRef]

SchadtK, M.

M. SchadtK, K. Schmitt, V. Kozinkov, V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Schmid, A.

Schmitt, K.

M. SchadtK, K. Schmitt, V. Kozinkov, V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Seki, T.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosaki, K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214–1216 (1988).
[CrossRef]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

Skerrett, K. J.

Speck, D. R.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Sueda, K.

K. Sueda, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, “Speckle suppression of laser light using liquid crystals aligned by photoisomerization of dye molecules,” Appl. Phys. Lett. 102, 5111–5113 (2002).
[CrossRef]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

Suzuki, Y.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosaki, K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214–1216 (1988).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

Tsubakimoto, K.

K. Sueda, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, “Speckle suppression of laser light using liquid crystals aligned by photoisomerization of dye molecules,” Appl. Phys. Lett. 102, 5111–5113 (2002).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Sueda, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, “Speckle suppression of laser light using liquid crystals aligned by photoisomerization of dye molecules,” Appl. Phys. Lett. 102, 5111–5113 (2002).
[CrossRef]

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

J. Appl. Opt. (1)

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Opt. 62, 4100–4108 (1987).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. SchadtK, K. Schmitt, V. Kozinkov, V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Langmuir (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosaki, K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214–1216 (1988).
[CrossRef]

Nature (London) (2)

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

C. Jones, S. Day, “Shedding light on alignment,” Nature (London) 351, 15 (1991).
[CrossRef]

Opt. Commun. (1)

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Opt. Rev. (1)

T. Bontoux, T. Saiki, T. Kanabe, H. Fujita, M. Nakatsuka, “Study of serrated aperture for a Cassegrain booster amplifier,” Opt. Rev. 5, 234–241 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Molecular structure and (b) absorption spectrum of the dye doped in the poly(vinyl alcohol) alignment layer.

Fig. 2
Fig. 2

Fabrication of the LC cell.

Fig. 3
Fig. 3

Experiment for measuring the LC molecular reorientation: (a) experimental setup, (b) initial twisted alignment, (c) alignment changed by UV-light illumination.

Fig. 4
Fig. 4

Time required for the complete reorientation of the LC versus the illuminated UV power.

Fig. 5
Fig. 5

Variation with time of the intensity of transmitted probe light.

Fig. 6
Fig. 6

Transmission of the probe light as a function of the rotation angle of the analyzer; (a)–(d) correspond to the points marked in Fig. 5.

Fig. 7
Fig. 7

Transmission pattern from a fabricated LC SAA set between crossed polarizers.

Fig. 8
Fig. 8

Suppression of diffraction fringes by a LC SAA: (a) experimental setup, (b) beam pattern with a hard aperture observed just behind the output lens of the spatial filter, (c) beam pattern with a SAA observed at the same plane, (d) LC SAA pattern relayed onto the output image plane.

Fig. 9
Fig. 9

(a) Transmission pattern near the boundary of a fabricated LC SA set between crossed polarizers and (b) the intensity profile measured at the output image plane shown in Fig. 8(a).

Metrics