Abstract

In this paper, a micro gradient-index conical lens, which has a larger acceptance angle than a conventional microlens, is presented. Methods on how to simulate these lenses in commercial optical design software CodeV are introduced, and the effects of several index profiles and cone shapes are compared in simulation. Results show that a micro gradient-index conical lens has a four times larger acceptance angle compared with a microlens. Additionally, conical lenses with a Gaussian-index profile show a larger acceptance angle than those with a solid refractive index. Fabricated conical lenses show an acceptance angle of more than 27° for a detection threshold of 50%, which agrees with the simulation result.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Chateauneuf, A. Kirk, D. V. Plant, T. Yamamoto, J. D. Ahearn, “512-channel vertical-cavity surface-emitting laser based free-space optical link,” Appl. Opt. 41, 5552–5561 (2002).
    [CrossRef] [PubMed]
  2. F. Lacroix, E. Bernier, M. H. Ayliffe, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Implementation of a compact, four-stage, scalable optical interconnect for photonic backplane applications,” Appl. Opt. 41, 1541–1555 (2002).
    [CrossRef] [PubMed]
  3. S. Esener, P. Marchand, “Present status and future needs of free-space optical interconnects,” Mater. Sci. Semicond. Process. 3, 433–435 (2000).
    [CrossRef]
  4. A. Kirk, D. Plant, “Recent developments in parallel optical interconnects,” Proc. SPIE 4455, 198–208 (2001).
    [CrossRef]
  5. A. Safaai-Jazi, V. Suppanitchakij, “A tapered graded-index lens: analysis of transmission properties and applications in fiber-optic communication systems,” IEEE J. Quantum Electron. 33, 2159–2166 (1997).
    [CrossRef]
  6. O. Latry, M. Ketata, K. Ketata, R. Debrie, “Optimization of the coupling between a tapered fibre and a p-i-n photodiode,” J. Phys. D: Appl. Phys. 28, 1562–1572 (1995).
    [CrossRef]
  7. W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, San Diego, 1989).
  8. R. Ramirez-Iniguez, R. J. Green, “Totally internally reflecting optical antennas for wireless IR communication,” IEEE Wireless Design Conference (IEEE, Piscataway, N.J., 2002), pp. 129–132.
  9. X. Ning, R. Winston, J. Ogallagher, “Dielectric totally internally reflecting concentrators,” Appl. Opt. 26, 300–305 (1987).
    [CrossRef] [PubMed]
  10. R. P. Friedman, J. M. Gordon, “Optical designs for ultrahigh/flux infrared and solar energy collection: monolithic dielectric tailored edge ray concentrators,” Appl. Opt. 35, 6684–6691 (1996).
    [CrossRef] [PubMed]
  11. X. Ning, “Application of non-imaging optical concentrators to infrared energy detection,” Proc. SPIE 1528, 88–92 (1991).
    [CrossRef]
  12. C. Diamond, “OMOS: optically written micro-optical systems in photopolymer,” Ph.D. dissertation (University of California, San Diego, 2000).

2002 (2)

2001 (1)

A. Kirk, D. Plant, “Recent developments in parallel optical interconnects,” Proc. SPIE 4455, 198–208 (2001).
[CrossRef]

2000 (1)

S. Esener, P. Marchand, “Present status and future needs of free-space optical interconnects,” Mater. Sci. Semicond. Process. 3, 433–435 (2000).
[CrossRef]

1997 (1)

A. Safaai-Jazi, V. Suppanitchakij, “A tapered graded-index lens: analysis of transmission properties and applications in fiber-optic communication systems,” IEEE J. Quantum Electron. 33, 2159–2166 (1997).
[CrossRef]

1996 (1)

1995 (1)

O. Latry, M. Ketata, K. Ketata, R. Debrie, “Optimization of the coupling between a tapered fibre and a p-i-n photodiode,” J. Phys. D: Appl. Phys. 28, 1562–1572 (1995).
[CrossRef]

1991 (1)

X. Ning, “Application of non-imaging optical concentrators to infrared energy detection,” Proc. SPIE 1528, 88–92 (1991).
[CrossRef]

1987 (1)

Ahearn, J. D.

Ayliffe, M. H.

Bernier, E.

Chateauneuf, M.

Debrie, R.

O. Latry, M. Ketata, K. Ketata, R. Debrie, “Optimization of the coupling between a tapered fibre and a p-i-n photodiode,” J. Phys. D: Appl. Phys. 28, 1562–1572 (1995).
[CrossRef]

Diamond, C.

C. Diamond, “OMOS: optically written micro-optical systems in photopolymer,” Ph.D. dissertation (University of California, San Diego, 2000).

Esener, S.

S. Esener, P. Marchand, “Present status and future needs of free-space optical interconnects,” Mater. Sci. Semicond. Process. 3, 433–435 (2000).
[CrossRef]

Friedman, R. P.

Gordon, J. M.

Green, R. J.

R. Ramirez-Iniguez, R. J. Green, “Totally internally reflecting optical antennas for wireless IR communication,” IEEE Wireless Design Conference (IEEE, Piscataway, N.J., 2002), pp. 129–132.

Ketata, K.

O. Latry, M. Ketata, K. Ketata, R. Debrie, “Optimization of the coupling between a tapered fibre and a p-i-n photodiode,” J. Phys. D: Appl. Phys. 28, 1562–1572 (1995).
[CrossRef]

Ketata, M.

O. Latry, M. Ketata, K. Ketata, R. Debrie, “Optimization of the coupling between a tapered fibre and a p-i-n photodiode,” J. Phys. D: Appl. Phys. 28, 1562–1572 (1995).
[CrossRef]

Kirk, A.

Kirk, A. G.

Lacroix, F.

Latry, O.

O. Latry, M. Ketata, K. Ketata, R. Debrie, “Optimization of the coupling between a tapered fibre and a p-i-n photodiode,” J. Phys. D: Appl. Phys. 28, 1562–1572 (1995).
[CrossRef]

Marchand, P.

S. Esener, P. Marchand, “Present status and future needs of free-space optical interconnects,” Mater. Sci. Semicond. Process. 3, 433–435 (2000).
[CrossRef]

Ning, X.

X. Ning, “Application of non-imaging optical concentrators to infrared energy detection,” Proc. SPIE 1528, 88–92 (1991).
[CrossRef]

X. Ning, R. Winston, J. Ogallagher, “Dielectric totally internally reflecting concentrators,” Appl. Opt. 26, 300–305 (1987).
[CrossRef] [PubMed]

Ogallagher, J.

Plant, D.

A. Kirk, D. Plant, “Recent developments in parallel optical interconnects,” Proc. SPIE 4455, 198–208 (2001).
[CrossRef]

Plant, D. V.

Ramirez-Iniguez, R.

R. Ramirez-Iniguez, R. J. Green, “Totally internally reflecting optical antennas for wireless IR communication,” IEEE Wireless Design Conference (IEEE, Piscataway, N.J., 2002), pp. 129–132.

Safaai-Jazi, A.

A. Safaai-Jazi, V. Suppanitchakij, “A tapered graded-index lens: analysis of transmission properties and applications in fiber-optic communication systems,” IEEE J. Quantum Electron. 33, 2159–2166 (1997).
[CrossRef]

Suppanitchakij, V.

A. Safaai-Jazi, V. Suppanitchakij, “A tapered graded-index lens: analysis of transmission properties and applications in fiber-optic communication systems,” IEEE J. Quantum Electron. 33, 2159–2166 (1997).
[CrossRef]

Tooley, F. A. P.

Welford, W. T.

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, San Diego, 1989).

Winston, R.

Yamamoto, T.

Appl. Opt. (4)

IEEE J. Quantum Electron (1)

A. Safaai-Jazi, V. Suppanitchakij, “A tapered graded-index lens: analysis of transmission properties and applications in fiber-optic communication systems,” IEEE J. Quantum Electron. 33, 2159–2166 (1997).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

O. Latry, M. Ketata, K. Ketata, R. Debrie, “Optimization of the coupling between a tapered fibre and a p-i-n photodiode,” J. Phys. D: Appl. Phys. 28, 1562–1572 (1995).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

S. Esener, P. Marchand, “Present status and future needs of free-space optical interconnects,” Mater. Sci. Semicond. Process. 3, 433–435 (2000).
[CrossRef]

Proc. SPIE (2)

A. Kirk, D. Plant, “Recent developments in parallel optical interconnects,” Proc. SPIE 4455, 198–208 (2001).
[CrossRef]

X. Ning, “Application of non-imaging optical concentrators to infrared energy detection,” Proc. SPIE 1528, 88–92 (1991).
[CrossRef]

Other (3)

C. Diamond, “OMOS: optically written micro-optical systems in photopolymer,” Ph.D. dissertation (University of California, San Diego, 2000).

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, San Diego, 1989).

R. Ramirez-Iniguez, R. J. Green, “Totally internally reflecting optical antennas for wireless IR communication,” IEEE Wireless Design Conference (IEEE, Piscataway, N.J., 2002), pp. 129–132.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics