Abstract

Fourier-transform infrared spectroscopy has shown alterations of spectral characteristics of cells and tissues as a result of carcinogenesis. The research reported here focuses on the diagnosis of cancer in formalin-fixed biopsied tissue for which immunochemistry is not possible and when PAP-smear results are to be confirmed. The data from two groups of patients (a control group and a group of patients diagnosed with cervical cancer) were analyzed. It was found that the glucose/phosphate ratio decreases (by 23–49%) and the RNA/DNA ratio increases (by 38–150%) in carcinogenic compared with normal tissue. Fourier-transform microspectroscopy was used to examine these tissues. This type of study in larger populations may help to set standards or classes with which to use treated biopsied tissue to predict the possibility of cancer. Probabilistic neural networks and statistical tests as parts of these biopsies predict the possibility of cancer with a high degree of accuracy (>95%).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. American Cancer Society, Cancer Facts and Figures 2005 (American Cancer Society, Atlanta, Ga., 2005).
  2. S. S. Devessa, J. L. Young, J. F. Fraumeni, “Recent trends in cervix uteri cancer,” Cancer 64, 2184–2190 (1989).
    [CrossRef]
  3. J. Waterhouse, C. Muir, K. Shanmugaratnam, J. Powell, eds., Cancer Incidence in Five Continents, Vol. 42 of International Agency for Research on Cancer scientific publication series (IARC, Lyon, 1982), Vol. 4, p. 42.
  4. J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986).
    [CrossRef] [PubMed]
  5. M. H. Schiffman, L. A. Brinton, S. S. Devessa, J. Fraumeni, F. Joseph, “Cervical cancer,” in Cancer Epidemiology and Prevention, D. Schottenfeld, J. Fraumeni, F. Joseph, eds. (Oxford U. Press, New York, 1996).
  6. A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988).
    [CrossRef] [PubMed]
  7. H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
    [CrossRef]
  8. L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
    [PubMed]
  9. L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
    [CrossRef] [PubMed]
  10. L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
    [CrossRef] [PubMed]
  11. P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
    [CrossRef] [PubMed]
  12. B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
    [CrossRef] [PubMed]
  13. S. R. Lowry, “The analysis of exfoliated cervical cells by infrared microscopy,” Cell. Mol. Biol. 44, 169–177 (1998).
    [PubMed]
  14. M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
    [CrossRef] [PubMed]
  15. M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
    [CrossRef]
  16. M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, “IR spectra and IR spectral maps of individual normal and cancerous cells,” Biopolymers 67, 349–353 (2002).
    [CrossRef] [PubMed]
  17. S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002).
    [CrossRef] [PubMed]
  18. D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” in Infrared and Raman Spectrscopy of Biological Materials. Practical Spectroscopy Series, H.-U. Gremlich, B. Yan, eds. (Marcel-Dekker, New York, 2001), Vol. 24, pp. 323–377.
  19. S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
    [CrossRef] [PubMed]
  20. S. G. Mallat, S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 710–732 (1992).
    [CrossRef]
  21. D. F. Specht, “Probabilistic neural networks and the polynomial adaline as complementary techniques for classification,” IEEE Trans. Neural Netw. 1, 111–121 (1990).
    [CrossRef] [PubMed]
  22. R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Proc. ASSP 4, 4–22 (1987).
    [CrossRef]
  23. P. D. Wasserman, Neural Computing: Theory and Practice (Van Nostrand Reinhold, New York, 1989).
  24. A. Ferenczy, in Pathology of the Female Genital Tract, A. Blaustine, ed. (Springer-Verlag, Heidelberg, 1982).
  25. P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991).
    [CrossRef]
  26. A. B. Fields, J. G. Jones, G. M. Thomas, C. D. Runowicz, “Gynecologic cancer,” in Clinical Oncology, R. E. Lenhard, R. T. Osten, T. Gansler, eds. (American Cancer Society, Atlanta, Ga., 2001), pp. 455–497.
  27. F. S. Parker, Application of Infrared Spectroscopy in Biochemistry, Biology and Medicine (Plenum, New York, 1971).
    [CrossRef]
  28. R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999).
    [PubMed]
  29. A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).
  30. J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
    [CrossRef]
  31. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
    [PubMed]
  32. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
    [CrossRef] [PubMed]
  33. A. Kumar, S. Sharma, C. S. Pundir, A. Sharma, “Decreased plasma glutathiome in cancer of the uterine cervix,” Cancer Lett. 94, 107–111 (1995).
    [CrossRef] [PubMed]
  34. B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
    [CrossRef] [PubMed]
  35. M. J. Romeo, B. R. Wood, M. A. Quinn, D. McNaughton, “Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy,” Biospectroscopy 72, 69–76 (2003).
  36. S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
    [CrossRef] [PubMed]

2004

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

2003

M. J. Romeo, B. R. Wood, M. A. Quinn, D. McNaughton, “Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy,” Biospectroscopy 72, 69–76 (2003).

2002

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, “IR spectra and IR spectral maps of individual normal and cancerous cells,” Biopolymers 67, 349–353 (2002).
[CrossRef] [PubMed]

S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002).
[CrossRef] [PubMed]

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

2001

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

1999

R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999).
[PubMed]

1998

L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
[PubMed]

L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

S. R. Lowry, “The analysis of exfoliated cervical cells by infrared microscopy,” Cell. Mol. Biol. 44, 169–177 (1998).
[PubMed]

1997

M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
[CrossRef] [PubMed]

M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
[CrossRef]

1995

A. Kumar, S. Sharma, C. S. Pundir, A. Sharma, “Decreased plasma glutathiome in cancer of the uterine cervix,” Cancer Lett. 94, 107–111 (1995).
[CrossRef] [PubMed]

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

1994

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

1992

S. G. Mallat, S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 710–732 (1992).
[CrossRef]

1991

P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991).
[CrossRef]

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

1990

D. F. Specht, “Probabilistic neural networks and the polynomial adaline as complementary techniques for classification,” IEEE Trans. Neural Netw. 1, 111–121 (1990).
[CrossRef] [PubMed]

1989

S. S. Devessa, J. L. Young, J. F. Fraumeni, “Recent trends in cervix uteri cancer,” Cancer 64, 2184–2190 (1989).
[CrossRef]

1988

A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988).
[CrossRef] [PubMed]

1987

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Proc. ASSP 4, 4–22 (1987).
[CrossRef]

1986

J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986).
[CrossRef] [PubMed]

Argov, S.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

Arulkumaran, S.

S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002).
[CrossRef] [PubMed]

Ashdown, M.

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

Badizadegan, K.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Bauer, H. M.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

Beck, J. L.

A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988).
[CrossRef] [PubMed]

Bhandare, P.

M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
[CrossRef] [PubMed]

Boone, C. W.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Brinton, L. A.

M. H. Schiffman, L. A. Brinton, S. S. Devessa, J. Fraumeni, F. Joseph, “Cervical cancer,” in Cancer Epidemiology and Prevention, D. Schottenfeld, J. Fraumeni, F. Joseph, eds. (Oxford U. Press, New York, 1996).

Cahn, F.

M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
[CrossRef] [PubMed]

Campbell, C. E.

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Caputo, T. A.

M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
[CrossRef] [PubMed]

P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991).
[CrossRef]

Cardona, M.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Carmichael, J. A.

J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986).
[CrossRef] [PubMed]

Carr-Locke, D. L.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Chambers, J. C.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

Chimera, J.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

Chiriboga, L.

M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, “IR spectra and IR spectral maps of individual normal and cancerous cells,” Biopolymers 67, 349–353 (2002).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
[PubMed]

L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

Clarke, D. H.

J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986).
[CrossRef] [PubMed]

Cohenford, M. A.

M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
[CrossRef] [PubMed]

Crum, C. P.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Dasari, R. R.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Devessa, S. S.

S. S. Devessa, J. L. Young, J. F. Fraumeni, “Recent trends in cervix uteri cancer,” Cancer 64, 2184–2190 (1989).
[CrossRef]

M. H. Schiffman, L. A. Brinton, S. S. Devessa, J. Fraumeni, F. Joseph, “Cervical cancer,” in Cancer Epidemiology and Prevention, D. Schottenfeld, J. Fraumeni, F. Joseph, eds. (Oxford U. Press, New York, 1996).

Diem, M.

M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, “IR spectra and IR spectral maps of individual normal and cancerous cells,” Biopolymers 67, 349–353 (2002).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
[PubMed]

L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

Eid, P.

M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
[CrossRef]

Fang Kan, L.

S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002).
[CrossRef] [PubMed]

Faught, W.

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Feigel, R.

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Feld, M. S.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Ferenczy, A.

A. Ferenczy, in Pathology of the Female Genital Tract, A. Blaustine, ed. (Springer-Verlag, Heidelberg, 1982).

Fields, A. B.

A. B. Fields, J. G. Jones, G. M. Thomas, C. D. Runowicz, “Gynecologic cancer,” in Clinical Oncology, R. E. Lenhard, R. T. Osten, T. Gansler, eds. (American Cancer Society, Atlanta, Ga., 2001), pp. 455–497.

Fraught, W.

M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
[CrossRef]

Fraumeni, J.

M. H. Schiffman, L. A. Brinton, S. S. Devessa, J. Fraumeni, F. Joseph, “Cervical cancer,” in Cancer Epidemiology and Prevention, D. Schottenfeld, J. Fraumeni, F. Joseph, eds. (Oxford U. Press, New York, 1996).

Fraumeni, J. F.

S. S. Devessa, J. L. Young, J. F. Fraumeni, “Recent trends in cervix uteri cancer,” Cancer 64, 2184–2190 (1989).
[CrossRef]

Fung, Kee

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Fung, M.

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Fung, M. F. K.

M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
[CrossRef]

Georgakoudi, I.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Godwin, T. A.

M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
[CrossRef] [PubMed]

P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991).
[CrossRef]

Goldstein, J.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

Grecer, C. E.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

Guijon, F. B.

R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999).
[PubMed]

Guterman, H.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

Hanselaar, A. G.

A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988).
[CrossRef] [PubMed]

Hislop, T.

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

Irwig, L. M.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Jackli, P.

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Jagannathan, R.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

Jones, J. G.

A. B. Fields, J. G. Jones, G. M. Thomas, C. D. Runowicz, “Gynecologic cancer,” in Clinical Oncology, R. E. Lenhard, R. T. Osten, T. Gansler, eds. (American Cancer Society, Atlanta, Ga., 2001), pp. 455–497.

Joseph, F.

M. H. Schiffman, L. A. Brinton, S. S. Devessa, J. Fraumeni, F. Joseph, “Cervical cancer,” in Cancer Epidemiology and Prevention, D. Schottenfeld, J. Fraumeni, F. Joseph, eds. (Oxford U. Press, New York, 1996).

Kantarovich, K.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

Karchmar, E. J.

J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986).
[CrossRef] [PubMed]

Kumar, A.

A. Kumar, S. Sharma, C. S. Pundir, A. Sharma, “Decreased plasma glutathiome in cancer of the uterine cervix,” Cancer Lett. 94, 107–111 (1995).
[CrossRef] [PubMed]

Lasch, P.

M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, “IR spectra and IR spectral maps of individual normal and cancerous cells,” Biopolymers 67, 349–353 (2002).
[CrossRef] [PubMed]

Lee, C.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Lippmann, R. P.

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Proc. ASSP 4, 4–22 (1987).
[CrossRef]

Lowry, S. R.

S. R. Lowry, “The analysis of exfoliated cervical cells by infrared microscopy,” Cell. Mol. Biol. 44, 169–177 (1998).
[PubMed]

Mackerras, D.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Mahadevan, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Mallat, S. G.

S. G. Mallat, S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 710–732 (1992).
[CrossRef]

Manos, M. M.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

Mantsch, H. H.

R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999).
[PubMed]

Mark, S.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

McNaughton, D.

M. J. Romeo, B. R. Wood, M. A. Quinn, D. McNaughton, “Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy,” Biospectroscopy 72, 69–76 (2003).

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

Mikhael, N. Z.

M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
[CrossRef]

Mitchell, M. F.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Moher, D.

J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986).
[CrossRef] [PubMed]

Molodysky, E.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Mordechai, S.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

Morris, B. J.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Morris, L. J.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Muller, M. G.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Naumann, D.

D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” in Infrared and Raman Spectrscopy of Biological Materials. Practical Spectroscopy Series, H.-U. Gremlich, B. Yan, eds. (Marcel-Dekker, New York, 2001), Vol. 24, pp. 323–377.

Neviliappan, S.

S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002).
[CrossRef] [PubMed]

Nightingale, B. N.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Ohlke, I. D.

J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986).
[CrossRef] [PubMed]

Oud, P. S.

A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988).
[CrossRef] [PubMed]

Pacifico, A.

M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, “IR spectra and IR spectral maps of individual normal and cancerous cells,” Biopolymers 67, 349–353 (2002).
[CrossRef] [PubMed]

Pahlplatz, M. M.

A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988).
[CrossRef] [PubMed]

Paraskevas, M.

R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999).
[PubMed]

Parker, F. S.

F. S. Parker, Application of Infrared Spectroscopy in Biochemistry, Biology and Medicine (Plenum, New York, 1971).
[CrossRef]

Podshyvalov, A.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

Pundir, C. S.

A. Kumar, S. Sharma, C. S. Pundir, A. Sharma, “Decreased plasma glutathiome in cancer of the uterine cervix,” Cancer Lett. 94, 107–111 (1995).
[CrossRef] [PubMed]

Quinn, M. A.

M. J. Romeo, B. R. Wood, M. A. Quinn, D. McNaughton, “Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy,” Biospectroscopy 72, 69–76 (2003).

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

Ramanujam, N.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Ramesh, J.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

Reingold, A.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

Richards-Kortum, R.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Rigas, B.

M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
[CrossRef] [PubMed]

P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991).
[CrossRef]

Romeo, M.

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

Romeo, M. J.

M. J. Romeo, B. R. Wood, M. A. Quinn, D. McNaughton, “Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy,” Biospectroscopy 72, 69–76 (2003).

Runowicz, C. D.

A. B. Fields, J. G. Jones, G. M. Thomas, C. D. Runowicz, “Gynecologic cancer,” in Clinical Oncology, R. E. Lenhard, R. T. Osten, T. Gansler, eds. (American Cancer Society, Atlanta, Ga., 2001), pp. 455–497.

Sahu, R. K.

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

Salib, S.

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Salman, A.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

Schiffman, M. H.

M. H. Schiffman, L. A. Brinton, S. S. Devessa, J. Fraumeni, F. Joseph, “Cervical cancer,” in Cancer Epidemiology and Prevention, D. Schottenfeld, J. Fraumeni, F. Joseph, eds. (Oxford U. Press, New York, 1996).

Senterman, M.

M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
[CrossRef]

Senterman, M. K.

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Sharma, A.

A. Kumar, S. Sharma, C. S. Pundir, A. Sharma, “Decreased plasma glutathiome in cancer of the uterine cervix,” Cancer Lett. 94, 107–111 (1995).
[CrossRef] [PubMed]

Sharma, S.

A. Kumar, S. Sharma, C. S. Pundir, A. Sharma, “Decreased plasma glutathiome in cancer of the uterine cervix,” Cancer Lett. 94, 107–111 (1995).
[CrossRef] [PubMed]

Shaw, R. A.

R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999).
[PubMed]

Sheets, E. E.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Silva, E.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Sinelnikov, I.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

Specht, D. F.

D. F. Specht, “Probabilistic neural networks and the polynomial adaline as complementary techniques for classification,” IEEE Trans. Neural Netw. 1, 111–121 (1990).
[CrossRef] [PubMed]

Sternhell, S.

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

Tait, B.

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

Tashiro, C. J.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

Thomas, G. M.

A. B. Fields, J. G. Jones, G. M. Thomas, C. D. Runowicz, “Gynecologic cancer,” in Clinical Oncology, R. E. Lenhard, R. T. Osten, T. Gansler, eds. (American Cancer Society, Atlanta, Ga., 2001), pp. 455–497.

Thomsen, S.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Ting, Y.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Vigorita, V.

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
[CrossRef] [PubMed]

Vooijs, G. P.

A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988).
[CrossRef] [PubMed]

Walfisch, S.

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

Walter, T. T. L.

S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002).
[CrossRef] [PubMed]

Wasserman, P. D.

P. D. Wasserman, Neural Computing: Theory and Practice (Van Nostrand Reinhold, New York, 1989).

Wong, P. T.

S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002).
[CrossRef] [PubMed]

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

Wong, P. T. T.

M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
[CrossRef]

P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991).
[CrossRef]

Wong, R. K.

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991).
[CrossRef]

Wood, B. R.

M. J. Romeo, B. R. Wood, M. A. Quinn, D. McNaughton, “Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy,” Biospectroscopy 72, 69–76 (2003).

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

Xie, P.

L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
[PubMed]

Yee, H.

L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
[PubMed]

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

Ying, S. L.

R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999).
[PubMed]

Young, J. L.

S. S. Devessa, J. L. Young, J. F. Fraumeni, “Recent trends in cervix uteri cancer,” Cancer 64, 2184–2190 (1989).
[CrossRef]

Zakim, D.

L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
[PubMed]

L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

Zarou, D.

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
[PubMed]

Zhong, S.

S. G. Mallat, S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 710–732 (1992).
[CrossRef]

Am. J. Obstet. Gynecol.

J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986).
[CrossRef] [PubMed]

Anal. Quant. Cytol. Histol.

R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999).
[PubMed]

Biopolymers

P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002).
[CrossRef] [PubMed]

M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, “IR spectra and IR spectral maps of individual normal and cancerous cells,” Biopolymers 67, 349–353 (2002).
[CrossRef] [PubMed]

Biospectroscopy

L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998).
[CrossRef] [PubMed]

L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998).
[CrossRef] [PubMed]

B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998).
[CrossRef] [PubMed]

M. J. Romeo, B. R. Wood, M. A. Quinn, D. McNaughton, “Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy,” Biospectroscopy 72, 69–76 (2003).

Cancer

S. S. Devessa, J. L. Young, J. F. Fraumeni, “Recent trends in cervix uteri cancer,” Cancer 64, 2184–2190 (1989).
[CrossRef]

A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988).
[CrossRef] [PubMed]

Cancer Lett.

A. Kumar, S. Sharma, C. S. Pundir, A. Sharma, “Decreased plasma glutathiome in cancer of the uterine cervix,” Cancer Lett. 94, 107–111 (1995).
[CrossRef] [PubMed]

Cancer Res.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Cell Mol. Biol.

A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).

Cell. Mol. Biol.

L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998).
[PubMed]

S. R. Lowry, “The analysis of exfoliated cervical cells by infrared microscopy,” Cell. Mol. Biol. 44, 169–177 (1998).
[PubMed]

Gynecol. Oncol.

M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997).
[CrossRef] [PubMed]

M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997).
[CrossRef]

S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995).
[CrossRef] [PubMed]

IEEE Proc. ASSP

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Proc. ASSP 4, 4–22 (1987).
[CrossRef]

IEEE Trans. Neural Netw.

D. F. Specht, “Probabilistic neural networks and the polynomial adaline as complementary techniques for classification,” IEEE Trans. Neural Netw. 1, 111–121 (1990).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell.

S. G. Mallat, S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 710–732 (1992).
[CrossRef]

J. Am. Med. Assoc.

H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991).
[CrossRef]

J. Biomed. Opt.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002).
[CrossRef] [PubMed]

S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991).
[CrossRef]

Subsurf. Sens. Technol. Appl.

J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001).
[CrossRef]

Other

A. B. Fields, J. G. Jones, G. M. Thomas, C. D. Runowicz, “Gynecologic cancer,” in Clinical Oncology, R. E. Lenhard, R. T. Osten, T. Gansler, eds. (American Cancer Society, Atlanta, Ga., 2001), pp. 455–497.

F. S. Parker, Application of Infrared Spectroscopy in Biochemistry, Biology and Medicine (Plenum, New York, 1971).
[CrossRef]

P. D. Wasserman, Neural Computing: Theory and Practice (Van Nostrand Reinhold, New York, 1989).

A. Ferenczy, in Pathology of the Female Genital Tract, A. Blaustine, ed. (Springer-Verlag, Heidelberg, 1982).

American Cancer Society, Cancer Facts and Figures 2005 (American Cancer Society, Atlanta, Ga., 2005).

J. Waterhouse, C. Muir, K. Shanmugaratnam, J. Powell, eds., Cancer Incidence in Five Continents, Vol. 42 of International Agency for Research on Cancer scientific publication series (IARC, Lyon, 1982), Vol. 4, p. 42.

M. H. Schiffman, L. A. Brinton, S. S. Devessa, J. Fraumeni, F. Joseph, “Cervical cancer,” in Cancer Epidemiology and Prevention, D. Schottenfeld, J. Fraumeni, F. Joseph, eds. (Oxford U. Press, New York, 1996).

D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” in Infrared and Raman Spectrscopy of Biological Materials. Practical Spectroscopy Series, H.-U. Gremlich, B. Yan, eds. (Marcel-Dekker, New York, 2001), Vol. 24, pp. 323–377.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Histological cross-section image of formalin-fixed typical human normal cervical biopsied tissue at 40× magnification. The labeled regions in the boxes represent the approximate sites from which the spectra in Fig. 2 were collected: a, basal layer; b, parabasal layer; c, intermediate layer; d, superficial. In the following figures, all measurements of normal tissue were performed in region c, the intermediate layer. (b) Histological cross-section image of an invasive squamous cell cervical carcinoma. The labeled regions are identified by the pathologist as a, squamous cell carcinoma (into the epithelium of the uterine cervix); b, invasive squamous cell carcinoma (into the stroma of the uterine cervix); c, stromal tissue of the uterine cervix (without evidence of a tumor). FTIR measurements of the cancer cells were taken at both regions a and b.

Fig. 2
Fig. 2

FTIR-MSP spectra at various histological sites of the normal cervical squamous epithelium presented in Fig. 1(a): a, basal; b, parabasal; c, intermediate; and d, superficial layers.

Fig. 3
Fig. 3

Infrared absorption spectra for three different patients: (a) 45 years old (cancer: dashed curve), (b) 28 years old (cancer: dotted curve), and (c) 57 years old (cancer: dash-dotted curve). All the normal tissues (solid traces) were measured at the intermediate layer, and the cancerous tissues (broken traces) were measured at region b in Fig. 1(b). The spectra represent the average of at least five different measurements from different sites, within region b of Fig. 1(b). The normal and cancer tissues were from different biopsies from the same patient.

Fig. 4
Fig. 4

(a) Infrared absorption spectra for HPV+ and HPV patients in the wave-number region 2700–3100−1 cm. The spectra presented were from patients numbered 3 (HPV+) and 10 (HPV). (b) Ratio of the absorbance that is due to CH3 and CH2 (∼2959 and ∼2917 cm−1, respectively) of antisymmetric stretching vibrations of koilocytosis (KOIL) and nonkoilocytosis (NO KOIL) in cervical-cancer tissues. The normal and cancerous tissues were different biopsied tissues from the same patient.

Fig. 5
Fig. 5

(a) Expanded views of the 800–1400-cm−1 region of the spectra shown in Fig. 3(a), indicating the major bands and the differences between normal and invasive cervical carcinoma sites. (b) Second derivative of the spectra designated as normal and cancerous in (a). The normal and cancerous tissues were different biopsied tissues from the same patient.

Fig. 6
Fig. 6

Measurements from various sites from a single HPV+ patient (not included in Fig. 3). The levels of standard deviation of the various measurements for normal and cancer cells are indicated by the bottom traces. Inset, expanded 900–1200-cm−1 region. The normal and cancerous tissues were different biopsied tissues from the same patient.

Fig. 7
Fig. 7

Glycogen levels for 21 patients, presented as the ratio of the glycogen peak (1045 cm−1) to amide II (1545 cm−1). Error bars are the standard errors calculated from the measurements at various sites for each biopsy. Normal and cancerous tissues were different biopsied tissues from the same patient.

Fig. 8
Fig. 8

(a) Cellular intensity RNA/DNA ratios at 1121/1020 for all 21 patients. (b) Cellular intensity glucose/phosphate ratio at 1030/1080 for all 21 patients. Error bars are the standard errors. The normal and cancerous tissues were different biopsied tissues from the same patient.

Fig. 9
Fig. 9

Two-dimensional plots of glucose/phosphate versus RNA/DNA ratios for normal and malignant cervical squamous epithelium. The glucose/phosphate ratio was measured at 1030/1080; the RNA/DNA, at 1121/1020. Triangles represent samples from control patients who are completely normal, with no evidence of cancer (NNC).

Tables (2)

Tables Icon

Table 1 Wavelet-Based Feature Combinations Used in This Study

Tables Icon

Table 2 FTIR Assessment for Normal and Cancer Diagnosesa

Metrics