Abstract

Handgrip strength is an easy measure of skeletal muscle function as well as a powerful predictor of disability, morbidity, and mortality. In order to measure grip strength, a novel fiber-optic approach is proposed and demonstrated. The strain-dependent wavelength response of fiber Bragg gratings has been utilized to obtain the strength of individual fingers. Finite-element analysis is carried out to optimize the pressure transmission from the finger to the fiber Bragg grating. The effect of stiffness of the pressurizing media, its thickness, and the effect of contact fraction are evaluated. It is found that significant enhancement in the pressure sensitivity and wavelength-tuning range is achievable by optimizing these parameters. Also the stress-induced birefringence could be reduced to an insignificant near-zero value. The device is calibrated in terms of load to convert the wavelength shift to the strength of the grip. The time-dependent wavelength fluctuation is also studied and presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  2. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
    [CrossRef]
  3. Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber-Bragg-grating temperature sensor system for medical applications,” IEEE J. Lightwave Technol. 15, 779–785 (1997).
    [CrossRef]
  4. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37, 8120–8128 (1998).
    [CrossRef]
  5. S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
    [CrossRef] [PubMed]
  6. H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
    [CrossRef] [PubMed]
  7. S. Bagis, G. Sahin, Y. Yapici, O. B. Cimen, C. Erdogan, “The effect of hand osteoarthritis on grip and pinch strength and hand function in postmenopausal women,” Clin. Rheumatol. 22, 420–424 (2003).
    [CrossRef] [PubMed]
  8. T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
    [PubMed]
  9. P. V. Solanki, K. P. Mulgaonkar, S. A. Rao, “Effect of early mobilisation on grip strength, pinch strength and work of hand muscles in cases of closed diaphyseal fracture radius-ulna treated with dynamic compression plating,” J. Postgrad. Med. 46, 84–87 (2000).
    [PubMed]
  10. “Study correlates grip strength and mortality in disabled women” (American Geriatrics Society, 5May2003), http://www.americangeriatrics.org/news/grip_strength.shtml .
  11. K. G. Thorngren, C. O. Werner, “Normal grip strength,” Acta Orthop. Scand. 50, 255–259 (1979).
    [CrossRef] [PubMed]
  12. A. Othonos, K. Kalli, “Fiber Bragg Gratings, Fundamentals and Applications in Telecommunication and Sensing (Artech, Boston, Mass., 1999).
  13. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32, 1223–1224 (1996).
    [CrossRef]
  14. Y. Lo, J. Sirkis, K. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4, 327–333 (1995).
    [CrossRef]
  15. F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
    [CrossRef]
  16. E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
    [CrossRef]
  17. C. M. Lawrence, D. V. Nelson, E. Udd, “Measurement of transverse strains with fiber Bragg gratings,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 218–228 (1997).
  18. A.-Ping Zhang, Bai-Ou Guan, Xiao-Mng Tao, Hwa-Yaw Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Opt. Commun. 206, 81–87 (2002).
    [CrossRef]
  19. M. LeBlanc, S. T. Vohra, T. E. Tsai, E. J. Friebele, “Transverse load sensing by use of π-phase shifted fiber Bragg grating,” Opt. Lett. 24, 1091–1093 (1999).
    [CrossRef]
  20. J. Zhao, X. Zhang, Y. Huang, X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
    [CrossRef]
  21. R. Gafsi, M. A. El-Sherif, “Analysis of induced birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
    [CrossRef]
  22. B. K. A. Ngoi, J. Paul, L. P. Zhao, Z. P. Fang, “Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging,” Opt. Commun. 242, 425–430 (2004).
    [CrossRef]
  23. R. G. Budynas, Advanced Strength and Applied Stress Analysis (McGraw-Hill, New York, 1977).
  24. “SMF-28 fiber product information sheet (2004),” http://www.corning.com/ .

2004

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

J. Zhao, X. Zhang, Y. Huang, X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

B. K. A. Ngoi, J. Paul, L. P. Zhao, Z. P. Fang, “Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging,” Opt. Commun. 242, 425–430 (2004).
[CrossRef]

2003

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
[CrossRef]

S. Bagis, G. Sahin, Y. Yapici, O. B. Cimen, C. Erdogan, “The effect of hand osteoarthritis on grip and pinch strength and hand function in postmenopausal women,” Clin. Rheumatol. 22, 420–424 (2003).
[CrossRef] [PubMed]

2002

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

A.-Ping Zhang, Bai-Ou Guan, Xiao-Mng Tao, Hwa-Yaw Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Opt. Commun. 206, 81–87 (2002).
[CrossRef]

2000

R. Gafsi, M. A. El-Sherif, “Analysis of induced birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

P. V. Solanki, K. P. Mulgaonkar, S. A. Rao, “Effect of early mobilisation on grip strength, pinch strength and work of hand muscles in cases of closed diaphyseal fracture radius-ulna treated with dynamic compression plating,” J. Postgrad. Med. 46, 84–87 (2000).
[PubMed]

1999

M. LeBlanc, S. T. Vohra, T. E. Tsai, E. J. Friebele, “Transverse load sensing by use of π-phase shifted fiber Bragg grating,” Opt. Lett. 24, 1091–1093 (1999).
[CrossRef]

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

1998

T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
[PubMed]

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37, 8120–8128 (1998).
[CrossRef]

1997

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber-Bragg-grating temperature sensor system for medical applications,” IEEE J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

1996

B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

1995

Y. Lo, J. Sirkis, K. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4, 327–333 (1995).
[CrossRef]

1979

K. G. Thorngren, C. O. Werner, “Normal grip strength,” Acta Orthop. Scand. 50, 255–259 (1979).
[CrossRef] [PubMed]

1978

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Atia, W. A.

B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Bagis, S.

S. Bagis, G. Sahin, Y. Yapici, O. B. Cimen, C. Erdogan, “The effect of hand osteoarthritis on grip and pinch strength and hand function in postmenopausal women,” Clin. Rheumatol. 22, 420–424 (2003).
[CrossRef] [PubMed]

Bennion, I.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37, 8120–8128 (1998).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber-Bragg-grating temperature sensor system for medical applications,” IEEE J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

Bosia, F.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
[CrossRef]

Botsis, J.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
[CrossRef]

Budynas, R. G.

R. G. Budynas, Advanced Strength and Applied Stress Analysis (McGraw-Hill, New York, 1977).

Cecchi, F.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Chehura, E.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Christensen, K.

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

Cimen, O. B.

S. Bagis, G. Sahin, Y. Yapici, O. B. Cimen, C. Erdogan, “The effect of hand osteoarthritis on grip and pinch strength and hand function in postmenopausal women,” Clin. Rheumatol. 22, 420–424 (2003).
[CrossRef] [PubMed]

Dima, F.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

El-Sherif, M. A.

R. Gafsi, M. A. El-Sherif, “Analysis of induced birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Erdogan, C.

S. Bagis, G. Sahin, Y. Yapici, O. B. Cimen, C. Erdogan, “The effect of hand osteoarthritis on grip and pinch strength and hand function in postmenopausal women,” Clin. Rheumatol. 22, 420–424 (2003).
[CrossRef] [PubMed]

Facchini, M.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
[CrossRef]

Fang, Z. P.

B. K. A. Ngoi, J. Paul, L. P. Zhao, Z. P. Fang, “Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging,” Opt. Commun. 242, 425–430 (2004).
[CrossRef]

Ferrucci, L.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Fisher, N. E.

Foley, D.

T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
[PubMed]

Frederiksen, H.

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

Friebele, E. J.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Gafsi, R.

R. Gafsi, M. A. El-Sherif, “Analysis of induced birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Gaist, D.

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

Gavrilov, L. R.

Giaccari, P.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
[CrossRef]

Giampaoli, S.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Guan, Bai-Ou

A.-Ping Zhang, Bai-Ou Guan, Xiao-Mng Tao, Hwa-Yaw Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Opt. Commun. 206, 81–87 (2002).
[CrossRef]

Guralnik, J. M.

T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
[PubMed]

Hand, J. W.

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Hjelmborg, J.

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

Huang, Y.

J. Zhao, X. Zhang, Y. Huang, X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Izmirlian, G.

T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
[PubMed]

Jackson, D. A.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37, 8120–8128 (1998).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber-Bragg-grating temperature sensor system for medical applications,” IEEE J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

James, S. W.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kalli, K.

A. Othonos, K. Kalli, “Fiber Bragg Gratings, Fundamentals and Applications in Telecommunication and Sensing (Artech, Boston, Mass., 1999).

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Lawrence, C. M.

C. M. Lawrence, D. V. Nelson, E. Udd, “Measurement of transverse strains with fiber Bragg gratings,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 218–228 (1997).

LeBlanc, M.

Limberger, H. G.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
[CrossRef]

Lo, Y.

Y. Lo, J. Sirkis, K. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4, 327–333 (1995).
[CrossRef]

Lo Noce, C.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Masaki, K.

T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
[PubMed]

McGue, M.

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

Menotti, A.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Mulgaonkar, K. P.

P. V. Solanki, K. P. Mulgaonkar, S. A. Rao, “Effect of early mobilisation on grip strength, pinch strength and work of hand muscles in cases of closed diaphyseal fracture radius-ulna treated with dynamic compression plating,” J. Postgrad. Med. 46, 84–87 (2000).
[PubMed]

Nelson, D. V.

C. M. Lawrence, D. V. Nelson, E. Udd, “Measurement of transverse strains with fiber Bragg gratings,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 218–228 (1997).

Ngoi, B. K. A.

B. K. A. Ngoi, J. Paul, L. P. Zhao, Z. P. Fang, “Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging,” Opt. Commun. 242, 425–430 (2004).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

A. Othonos, K. Kalli, “Fiber Bragg Gratings, Fundamentals and Applications in Telecommunication and Sensing (Artech, Boston, Mass., 1999).

Pannell, C. N.

Paul, J.

B. K. A. Ngoi, J. Paul, L. P. Zhao, Z. P. Fang, “Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging,” Opt. Commun. 242, 425–430 (2004).
[CrossRef]

Petersen, H. C.

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

Poce, A.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Rantanen, T.

T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
[PubMed]

Rao, S. A.

P. V. Solanki, K. P. Mulgaonkar, S. A. Rao, “Effect of early mobilisation on grip strength, pinch strength and work of hand muscles in cases of closed diaphyseal fracture radius-ulna treated with dynamic compression plating,” J. Postgrad. Med. 46, 84–87 (2000).
[PubMed]

Rao, Y. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber-Bragg-grating temperature sensor system for medical applications,” IEEE J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

Ren, X.

J. Zhao, X. Zhang, Y. Huang, X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Ritchie, K.

Y. Lo, J. Sirkis, K. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4, 327–333 (1995).
[CrossRef]

Sahin, G.

S. Bagis, G. Sahin, Y. Yapici, O. B. Cimen, C. Erdogan, “The effect of hand osteoarthritis on grip and pinch strength and hand function in postmenopausal women,” Clin. Rheumatol. 22, 420–424 (2003).
[CrossRef] [PubMed]

Salathe, R. P.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
[CrossRef]

Santaquilani, A.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Singh, H.

B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Sirkis, J.

Y. Lo, J. Sirkis, K. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4, 327–333 (1995).
[CrossRef]

Sirkis, J. S.

B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Solanki, P. V.

P. V. Solanki, K. P. Mulgaonkar, S. A. Rao, “Effect of early mobilisation on grip strength, pinch strength and work of hand muscles in cases of closed diaphyseal fracture radius-ulna treated with dynamic compression plating,” J. Postgrad. Med. 46, 84–87 (2000).
[PubMed]

Staines, S. E.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Tam, Hwa-Yaw

A.-Ping Zhang, Bai-Ou Guan, Xiao-Mng Tao, Hwa-Yaw Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Opt. Commun. 206, 81–87 (2002).
[CrossRef]

Tao, Xiao-Mng

A.-Ping Zhang, Bai-Ou Guan, Xiao-Mng Tao, Hwa-Yaw Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Opt. Commun. 206, 81–87 (2002).
[CrossRef]

Tatam, R. P.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Thorngren, K. G.

K. G. Thorngren, C. O. Werner, “Normal grip strength,” Acta Orthop. Scand. 50, 255–259 (1979).
[CrossRef] [PubMed]

Tsai, T. E.

Udd, E.

C. M. Lawrence, D. V. Nelson, E. Udd, “Measurement of transverse strains with fiber Bragg gratings,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 218–228 (1997).

Vaupel, J. W.

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

Vescio, M. F.

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Vohra, S. T.

Wagreich, B.

B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Webb, D. J.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37, 8120–8128 (1998).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber-Bragg-grating temperature sensor system for medical applications,” IEEE J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

Werner, C. O.

K. G. Thorngren, C. O. Werner, “Normal grip strength,” Acta Orthop. Scand. 50, 255–259 (1979).
[CrossRef] [PubMed]

White, L.

T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
[PubMed]

Yapici, Y.

S. Bagis, G. Sahin, Y. Yapici, O. B. Cimen, C. Erdogan, “The effect of hand osteoarthritis on grip and pinch strength and hand function in postmenopausal women,” Clin. Rheumatol. 22, 420–424 (2003).
[CrossRef] [PubMed]

Ye, C. C.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Zhang, A.-Ping

A.-Ping Zhang, Bai-Ou Guan, Xiao-Mng Tao, Hwa-Yaw Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Opt. Commun. 206, 81–87 (2002).
[CrossRef]

Zhang, L.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37, 8120–8128 (1998).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber-Bragg-grating temperature sensor system for medical applications,” IEEE J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

Zhang, X.

J. Zhao, X. Zhang, Y. Huang, X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Zhao, J.

J. Zhao, X. Zhang, Y. Huang, X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Zhao, L. P.

B. K. A. Ngoi, J. Paul, L. P. Zhao, Z. P. Fang, “Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging,” Opt. Commun. 242, 425–430 (2004).
[CrossRef]

Acta Orthop. Scand.

K. G. Thorngren, C. O. Werner, “Normal grip strength,” Acta Orthop. Scand. 50, 255–259 (1979).
[CrossRef] [PubMed]

Age Ageing

S. Giampaoli, L. Ferrucci, F. Cecchi, C. Lo Noce, A. Poce, F. Dima, A. Santaquilani, M. F. Vescio, A. Menotti, “Handgrip strength predicts incident disability in nondisabled older men,” Age Ageing 28, 283–288 (1999).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Clin. Rheumatol.

S. Bagis, G. Sahin, Y. Yapici, O. B. Cimen, C. Erdogan, “The effect of hand osteoarthritis on grip and pinch strength and hand function in postmenopausal women,” Clin. Rheumatol. 22, 420–424 (2003).
[CrossRef] [PubMed]

Electron. Lett.

B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Genet. Epidemiol.

H. Frederiksen, D. Gaist, H. C. Petersen, J. Hjelmborg, M. McGue, J. W. Vaupel, K. Christensen, “Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning,” Genet. Epidemiol. 23, 110–122 (2002).
[CrossRef] [PubMed]

IEEE J. Lightwave Technol.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber-Bragg-grating temperature sensor system for medical applications,” IEEE J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

J. Appl. Physiol.

T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” J. Appl. Physiol. 85, 2047–2053 (1998).
[PubMed]

J. Postgrad. Med.

P. V. Solanki, K. P. Mulgaonkar, S. A. Rao, “Effect of early mobilisation on grip strength, pinch strength and work of hand muscles in cases of closed diaphyseal fracture radius-ulna treated with dynamic compression plating,” J. Postgrad. Med. 46, 84–87 (2000).
[PubMed]

Opt. Commun.

A.-Ping Zhang, Bai-Ou Guan, Xiao-Mng Tao, Hwa-Yaw Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Opt. Commun. 206, 81–87 (2002).
[CrossRef]

J. Zhao, X. Zhang, Y. Huang, X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

B. K. A. Ngoi, J. Paul, L. P. Zhao, Z. P. Fang, “Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging,” Opt. Commun. 242, 425–430 (2004).
[CrossRef]

Opt. Fiber Technol.

R. Gafsi, M. A. El-Sherif, “Analysis of induced birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Smart Mater. Struct.

Y. Lo, J. Sirkis, K. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4, 327–333 (1995).
[CrossRef]

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, R. P. Salathe, “Characterization of the response of fiber Bragg grating sensors subjected to a two dimensional strain field,” Smart Mater. Struct. 12, 925–934 (2003).
[CrossRef]

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Other

C. M. Lawrence, D. V. Nelson, E. Udd, “Measurement of transverse strains with fiber Bragg gratings,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 218–228 (1997).

A. Othonos, K. Kalli, “Fiber Bragg Gratings, Fundamentals and Applications in Telecommunication and Sensing (Artech, Boston, Mass., 1999).

“Study correlates grip strength and mortality in disabled women” (American Geriatrics Society, 5May2003), http://www.americangeriatrics.org/news/grip_strength.shtml .

R. G. Budynas, Advanced Strength and Applied Stress Analysis (McGraw-Hill, New York, 1977).

“SMF-28 fiber product information sheet (2004),” http://www.corning.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of gratings fabricated on photosensitive fiber for individual fingers.

Fig. 2
Fig. 2

Schematic of the grip holder.

Fig. 3
Fig. 3

Schematic representing the fiber and the contact plate.

Fig. 4
Fig. 4

Schematic of the finite-element model and the coordinate system (figure not to scale).

Fig. 5
Fig. 5

(a) Axial and radial strains at center of the FBG for (a) E = 500 MPa, (b) E = 50 MPa, and (c) E = 5 MPa of the pressurizing media. (d) Comparison of axial strains for E = 5, 50, and 500 MPa.

Fig. 6
Fig. 6

Graph showing the effect of coating thickness and material stiffness on birefringence.

Fig. 7
Fig. 7

Graph showing the effect of contact friction on the wavelength-shift sensitivity.

Fig. 8
Fig. 8

Experimental setup for calibration.

Fig. 9
Fig. 9

Reflection spectrum at various test loads.

Fig. 10
Fig. 10

Calibration curve.

Fig. 11
Fig. 11

Reflection spectrum at different temperatures (21° C, 25 °C, 30 °C, and 35 °C).

Fig. 12
Fig. 12

Temporal response under various loads: loading.

Fig. 13
Fig. 13

Reflection spectrum from the grip sensor.

Fig. 14
Fig. 14

Plot of grip strength for the test case.

Tables (2)

Tables Icon

Table 1 Statistical Range of Human Handgrip Strengths to be Monitored

Tables Icon

Table 2 Peak Wavelength-Shift Data for a Test Case

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ λ b λ b = ɛ z n eff 2 2 [ ɛ r ( P 11 + P 12 ) + P 12 ɛ z ] ,
2 a = 4 [ P R π l ( 1 υ 2 2 ) E 1 ( 1 υ 2 2 ) E 2 E 1 E 2 ] 1 / 2 ,
Δ ( 1 n eff 2 ) x = 2 ( Δ n eff ) x ( x , y , z ) ( n eff , 0 ) 3 = P 11 ɛ x ( x , y , z ) + P 12 [ ɛ y ( x , y , z ) + ɛ z ( x , y , z ) ] ,
Δ ( 1 n eff 2 ) y = 2 ( Δ n eff ) y ( x , y , z ) ( n eff , 0 ) 3 = P 11 ɛ y ( x , y , z ) + P 12 [ ɛ x ( x , y , z ) + ɛ z ( x , y , z ) ] ,
Δ λ B x ( x , y , z ) = ( n eff , 0 ) 3 Λ B , 0 E × { ( P 11 2 υ P 12 ) × σ x ( x , y , z ) + [ ( 1 υ ) P 12 υ P 11 ] × [ σ y ( x , y , z ) + σ z ( x , y , z ) ] } + 2 n eff , 0 Λ B , 0 E { σ z ( x , y , z ) υ [ σ x ( x , y , z ) + σ y ( x , y , z ) ] } ,
Δ λ B y ( x , y , z ) = ( n eff , 0 ) 3 Λ B , 0 E × { ( P 11 2 υ P 12 ) × σ y ( x , y , z ) + [ ( 1 υ ) P 12 υ P 11 ] × [ σ x ( x , y , z ) + σ z ( x , y , z ) ] } + 2 n eff , 0 Λ B , 0 E { σ z ( x , y , z ) υ [ σ x ( x , y , z ) + σ y ( x , y , z ) ] } ,

Metrics