Abstract

A new method is presented for computation of diatomic rotational line strengths, or Hönl–London factors. The traditional approach includes separately calculating line positions and Hönl–London factors and assigning parity labels. The present approach shows that one merely computes the line strength for all possible term differences and discards those differences for which the strength vanishes. Numerical diagonalization of the upper and lower Hamiltonians is used, which directly obtains the line positions, Hönl–London factors, total parities, and e/f parities for both heteronuclear and homonuclear diatomic molecules. The fortran computer program discussed is also applicable for calculating n-photon diatomic spectra.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Von H. Hönl, F. London, “Uber die Instensitäten der Bandenlinien,” Z. Phys. 33, 803–809 (1925).
    [CrossRef]
  2. F. Roux, M. Michaud, M. Vervloet, “High-resolution Fourier spectrometry of 14N2: analysis of the (0–0), (0–1), (0–2), (0–3) bands of the C 3Πu ↔ B 3Πg system,” Can. J. Phys. 67, 143–147 (1989).
    [CrossRef]
  3. A. P. Thorne, Spectrophysics (Chapman & Hall, 1974, 1988).
  4. A. P. Thorne, U. Litzen, S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, 1999).
  5. R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
    [CrossRef]
  6. E. U. Condon, G. H. Shortly, The Theory of Atomic Spectra (Cambridge U. Press, 1964).
  7. I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer-Verlag, 1979).
    [CrossRef]
  8. H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, 1986).
  9. H. Lefebvre-Brion, R. W. Field, The Spectra and Dynamics of Diatomic Molecules (Elsevier, 2004).
  10. P. L. Rubin, “Line intensity factors in electronic spectra of diatomic molecules,” Opt. Spectrosc. 20, 325–327 (1966).
  11. I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules, L. Nemes, transl. (American Elsevier, 1969).
  12. J. T. Hougen, The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules, version 1.0, NBS Monograph 115 (National Institute of Standards and Technology, 1970), http://physics.nist.gov/DiatomicCalculations [2004, February2].
  13. A. Schadee, “The relation between the electronic oscillator strength and the wavelength of diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 7, 169–183 (1967).
    [CrossRef]
  14. A. Schadee, “On the normalization of Hönl–London factors,” Astron. Astrophys. 14, 401–404 (1971).
  15. A. Schadee, “Theory of first rotational lines in transitions of diatomic molecules,” Astron. Astrophys. 41, 203–212 (1975).
  16. J. B. Tatum, “The interpretation of intensities in diatomic molecular spectra,” Astrophys. J. Suppl. 14, 21–55 (1967),Astrophys. J. Suppl.22, 388 (1971).
    [CrossRef]
  17. E. E. Whiting, J. A. Paterson, I. Kovacs, R. W. Nichols, “Computer checking of rotational line intensity factors for diatomic molecules,” J. Mol. Spectrosc. 47, 84–98 (1973).
    [CrossRef]
  18. E. E. Whiting, R. W. Nicholls, “Reinvestigation of rotational line strength factors in diaomic spectra,” Astrophys. J. Suppl. 27, 1–19 (1974).
    [CrossRef]
  19. J. O. Hornkohl, C. Parigger, “Angular momentum states of the diatomic molecule,” Am. J. Phys. 64, 623–632 (1996).
    [CrossRef]
  20. J. O. Hornkohl, C. G. Parigger, “Boltzmann equilibrium spectrum program (BESP),” http://view.utsi.edu/besp .
  21. J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature-measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
    [CrossRef]
  22. C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
    [CrossRef]
  23. C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 30, 5986–5991 (2003).
    [CrossRef]
  24. I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
    [CrossRef]
  25. J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
    [CrossRef]
  26. C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 30, 6192–6198 (2003).
    [CrossRef]

2003

C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 30, 5986–5991 (2003).
[CrossRef]

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 30, 6192–6198 (2003).
[CrossRef]

1996

J. O. Hornkohl, C. Parigger, “Angular momentum states of the diatomic molecule,” Am. J. Phys. 64, 623–632 (1996).
[CrossRef]

1994

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

1991

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature-measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

1989

F. Roux, M. Michaud, M. Vervloet, “High-resolution Fourier spectrometry of 14N2: analysis of the (0–0), (0–1), (0–2), (0–3) bands of the C 3Πu ↔ B 3Πg system,” Can. J. Phys. 67, 143–147 (1989).
[CrossRef]

1982

R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

1975

A. Schadee, “Theory of first rotational lines in transitions of diatomic molecules,” Astron. Astrophys. 41, 203–212 (1975).

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

1974

E. E. Whiting, R. W. Nicholls, “Reinvestigation of rotational line strength factors in diaomic spectra,” Astrophys. J. Suppl. 27, 1–19 (1974).
[CrossRef]

1973

E. E. Whiting, J. A. Paterson, I. Kovacs, R. W. Nichols, “Computer checking of rotational line intensity factors for diatomic molecules,” J. Mol. Spectrosc. 47, 84–98 (1973).
[CrossRef]

1971

A. Schadee, “On the normalization of Hönl–London factors,” Astron. Astrophys. 14, 401–404 (1971).

1967

J. B. Tatum, “The interpretation of intensities in diatomic molecular spectra,” Astrophys. J. Suppl. 14, 21–55 (1967),Astrophys. J. Suppl.22, 388 (1971).
[CrossRef]

A. Schadee, “The relation between the electronic oscillator strength and the wavelength of diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 7, 169–183 (1967).
[CrossRef]

1966

P. L. Rubin, “Line intensity factors in electronic spectra of diatomic molecules,” Opt. Spectrosc. 20, 325–327 (1966).

1925

Von H. Hönl, F. London, “Uber die Instensitäten der Bandenlinien,” Z. Phys. 33, 803–809 (1925).
[CrossRef]

Bocherel, P.

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

Brown, J. M.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Condon, E. U.

E. U. Condon, G. H. Shortly, The Theory of Atomic Spectra (Cambridge U. Press, 1964).

Defrance, A.

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

Field, R. W.

H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, 1986).

H. Lefebvre-Brion, R. W. Field, The Spectra and Dynamics of Diatomic Molecules (Elsevier, 2004).

Guan, G.

C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 30, 5986–5991 (2003).
[CrossRef]

Hilborn, R. C.

R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

Hönl, Von H.

Von H. Hönl, F. London, “Uber die Instensitäten der Bandenlinien,” Z. Phys. 33, 803–809 (1925).
[CrossRef]

Hornkohl, J. O.

C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 30, 5986–5991 (2003).
[CrossRef]

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 30, 6192–6198 (2003).
[CrossRef]

J. O. Hornkohl, C. Parigger, “Angular momentum states of the diatomic molecule,” Am. J. Phys. 64, 623–632 (1996).
[CrossRef]

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature-measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

Hougen, J. T.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

J. T. Hougen, The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules, version 1.0, NBS Monograph 115 (National Institute of Standards and Technology, 1970), http://physics.nist.gov/DiatomicCalculations [2004, February2].

Huber, K. P.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Johansson, S.

A. P. Thorne, U. Litzen, S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, 1999).

Johns, J. W. C.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Keszler, A. M.

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 30, 6192–6198 (2003).
[CrossRef]

Kopp, I.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Kovacs, I.

E. E. Whiting, J. A. Paterson, I. Kovacs, R. W. Nichols, “Computer checking of rotational line intensity factors for diatomic molecules,” J. Mol. Spectrosc. 47, 84–98 (1973).
[CrossRef]

I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules, L. Nemes, transl. (American Elsevier, 1969).

Lefebvre-Brion, H.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, 1986).

H. Lefebvre-Brion, R. W. Field, The Spectra and Dynamics of Diatomic Molecules (Elsevier, 2004).

Lewis, J. W. L.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature-measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

Litzen, U.

A. P. Thorne, U. Litzen, S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, 1999).

London, F.

Von H. Hönl, F. London, “Uber die Instensitäten der Bandenlinien,” Z. Phys. 33, 803–809 (1925).
[CrossRef]

Merer, A. J.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Michaud, M.

F. Roux, M. Michaud, M. Vervloet, “High-resolution Fourier spectrometry of 14N2: analysis of the (0–0), (0–1), (0–2), (0–3) bands of the C 3Πu ↔ B 3Πg system,” Can. J. Phys. 67, 143–147 (1989).
[CrossRef]

Nemes, L.

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 30, 6192–6198 (2003).
[CrossRef]

Nicholls, R. W.

E. E. Whiting, R. W. Nicholls, “Reinvestigation of rotational line strength factors in diaomic spectra,” Astrophys. J. Suppl. 27, 1–19 (1974).
[CrossRef]

Nichols, R. W.

E. E. Whiting, J. A. Paterson, I. Kovacs, R. W. Nichols, “Computer checking of rotational line intensity factors for diatomic molecules,” J. Mol. Spectrosc. 47, 84–98 (1973).
[CrossRef]

Parigger, C.

J. O. Hornkohl, C. Parigger, “Angular momentum states of the diatomic molecule,” Am. J. Phys. 64, 623–632 (1996).
[CrossRef]

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature-measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

Parigger, C. G.

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 30, 6192–6198 (2003).
[CrossRef]

C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 30, 5986–5991 (2003).
[CrossRef]

Paterson, J. A.

E. E. Whiting, J. A. Paterson, I. Kovacs, R. W. Nichols, “Computer checking of rotational line intensity factors for diatomic molecules,” J. Mol. Spectrosc. 47, 84–98 (1973).
[CrossRef]

Plemmons, D. H.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

Queffelec, J.-L.

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

Ramsay, D. A.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Rebrion-Rowe, C.

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

Rostas, J.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Roux, F.

F. Roux, M. Michaud, M. Vervloet, “High-resolution Fourier spectrometry of 14N2: analysis of the (0–0), (0–1), (0–2), (0–3) bands of the C 3Πu ↔ B 3Πg system,” Can. J. Phys. 67, 143–147 (1989).
[CrossRef]

Rubin, P. L.

P. L. Rubin, “Line intensity factors in electronic spectra of diatomic molecules,” Opt. Spectrosc. 20, 325–327 (1966).

Schadee, A.

A. Schadee, “Theory of first rotational lines in transitions of diatomic molecules,” Astron. Astrophys. 41, 203–212 (1975).

A. Schadee, “On the normalization of Hönl–London factors,” Astron. Astrophys. 14, 401–404 (1971).

A. Schadee, “The relation between the electronic oscillator strength and the wavelength of diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 7, 169–183 (1967).
[CrossRef]

Shortly, G. H.

E. U. Condon, G. H. Shortly, The Theory of Atomic Spectra (Cambridge U. Press, 1964).

Sims, I. R.

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

Smith, I. W. M.

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

Sobelman, I. I.

I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer-Verlag, 1979).
[CrossRef]

Tatum, J. B.

J. B. Tatum, “The interpretation of intensities in diatomic molecular spectra,” Astrophys. J. Suppl. 14, 21–55 (1967),Astrophys. J. Suppl.22, 388 (1971).
[CrossRef]

Thorne, A. P.

A. P. Thorne, Spectrophysics (Chapman & Hall, 1974, 1988).

A. P. Thorne, U. Litzen, S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, 1999).

Travers, D.

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

Vervloet, M.

F. Roux, M. Michaud, M. Vervloet, “High-resolution Fourier spectrometry of 14N2: analysis of the (0–0), (0–1), (0–2), (0–3) bands of the C 3Πu ↔ B 3Πg system,” Can. J. Phys. 67, 143–147 (1989).
[CrossRef]

Whiting, E. E.

E. E. Whiting, R. W. Nicholls, “Reinvestigation of rotational line strength factors in diaomic spectra,” Astrophys. J. Suppl. 27, 1–19 (1974).
[CrossRef]

E. E. Whiting, J. A. Paterson, I. Kovacs, R. W. Nichols, “Computer checking of rotational line intensity factors for diatomic molecules,” J. Mol. Spectrosc. 47, 84–98 (1973).
[CrossRef]

Zare, R. N.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Am. J. Phys.

R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982).
[CrossRef]

J. O. Hornkohl, C. Parigger, “Angular momentum states of the diatomic molecule,” Am. J. Phys. 64, 623–632 (1996).
[CrossRef]

Appl. Opt.

C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 30, 5986–5991 (2003).
[CrossRef]

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 30, 6192–6198 (2003).
[CrossRef]

Astron. Astrophys.

A. Schadee, “On the normalization of Hönl–London factors,” Astron. Astrophys. 14, 401–404 (1971).

A. Schadee, “Theory of first rotational lines in transitions of diatomic molecules,” Astron. Astrophys. 41, 203–212 (1975).

Astrophys. J. Suppl.

J. B. Tatum, “The interpretation of intensities in diatomic molecular spectra,” Astrophys. J. Suppl. 14, 21–55 (1967),Astrophys. J. Suppl.22, 388 (1971).
[CrossRef]

E. E. Whiting, R. W. Nicholls, “Reinvestigation of rotational line strength factors in diaomic spectra,” Astrophys. J. Suppl. 27, 1–19 (1974).
[CrossRef]

Can. J. Phys.

F. Roux, M. Michaud, M. Vervloet, “High-resolution Fourier spectrometry of 14N2: analysis of the (0–0), (0–1), (0–2), (0–3) bands of the C 3Πu ↔ B 3Πg system,” Can. J. Phys. 67, 143–147 (1989).
[CrossRef]

J. Chem. Phys.

I. R. Sims, J.-L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, I. W. M. Smith, “Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH down to 25 K,” J. Chem. Phys. 100, 4229–4241 (1994).
[CrossRef]

J. Mol. Spectrosc.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, R. N. Zare, “The labeling of parity doublet levels in linear molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

E. E. Whiting, J. A. Paterson, I. Kovacs, R. W. Nichols, “Computer checking of rotational line intensity factors for diatomic molecules,” J. Mol. Spectrosc. 47, 84–98 (1973).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

A. Schadee, “The relation between the electronic oscillator strength and the wavelength of diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 7, 169–183 (1967).
[CrossRef]

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature-measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

Opt. Spectrosc.

P. L. Rubin, “Line intensity factors in electronic spectra of diatomic molecules,” Opt. Spectrosc. 20, 325–327 (1966).

Z. Phys.

Von H. Hönl, F. London, “Uber die Instensitäten der Bandenlinien,” Z. Phys. 33, 803–809 (1925).
[CrossRef]

Other

J. O. Hornkohl, C. G. Parigger, “Boltzmann equilibrium spectrum program (BESP),” http://view.utsi.edu/besp .

I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules, L. Nemes, transl. (American Elsevier, 1969).

J. T. Hougen, The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules, version 1.0, NBS Monograph 115 (National Institute of Standards and Technology, 1970), http://physics.nist.gov/DiatomicCalculations [2004, February2].

A. P. Thorne, Spectrophysics (Chapman & Hall, 1974, 1988).

A. P. Thorne, U. Litzen, S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, 1999).

E. U. Condon, G. H. Shortly, The Theory of Atomic Spectra (Cambridge U. Press, 1964).

I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer-Verlag, 1979).
[CrossRef]

H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, 1986).

H. Lefebvre-Brion, R. W. Field, The Spectra and Dynamics of Diatomic Molecules (Elsevier, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Example of using computed diatomic spectra to reveal the significance of parity assignments. (a) Section of a Fourier transform spectrum of the C 3ΠuB 3Πg band of a system of N2 recorded by Roux et al.2 Their high-resolution spectrum shows a 2:1 alternation of intensities in the resolved Λ doublets. (b) Computed spectrum in which the alternation of intensities in the Λ doublets is the reverse of that seen in the experimental spectrum, thus showing the significance of a reversal of parity assignment. (c) Spectrum computed with the correct parity assignment.

Fig. 2
Fig. 2

Left, computed laser-induced fluorescence spectra between 386 and 388 nm of the CN radical for the indicated temperatures, to model experimental results recorded by Sims et al.24 Right, computed free spontaneous emission spectra of the CN radical.

Tables (5)

Tables Icon

Table 1 Hund’s Case a Hamiltonian Matrix Elements that Do Not Mix Electronic Statesa

Tables Icon

Table 2 Hund’s Case a Hamiltonian Matrix Elements that Mix Electronic Statesa

Tables Icon

Table 3 HLFs for the Terrestrially Abundant Isotope of C2, C2(d3IIua3IIg) (0,0) Banda

Tables Icon

Table 4 Diatomic HNLs for 12C 13C, 12C 13C Swan (d3IIua3IIg) (0,0) Band

Tables Icon

Table 5 Diatomic HNLs for 13C2, 13C2 Swan (d3IIua3IIg) (0,0) Band

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

I u l = h ν u l A u l N u ,
I u l = d E d t d V = d P d V .
I u l ( joules second volume ) = h ν u l ( joules photon ) × A u l ( photons molecule second ) × N u ( molecules volume ) .
N u = N 0 g u exp ( E u / k B T ) Q ,
Q = i g i exp ( E i k B T ) .
I u l = h ν u l A u l N 0 g u exp ( E u / k B T ) Q .
A u l = 64 π 4 ν u l 3 3 h c 3 g u S u l .
I u l = 64 π 4 N 0 3 c 3 Q ν u l 4 S u l exp ( E u k B T ) ,
S u l = u l | u | T k ( q ) | l | 2 ,
S ( n J , n J ) = e 2 M M | n J M | x î + y ĵ + z k ̂ | n J M | 2 ,
S ( n υ J , n υ J ) = S ( n υ , n υ ) S ( J , J ) .
S a a ( J , J ) = ( 2 J + 1 ) J Ω q , Ω Ω | J Ω 2 ,
S b b ( J , J ) = ( 2 J + 1 ) ( 2 J + 1 ) ( 2 N + 1 ) × N Λ q , Λ Λ | N Λ 2 { S N J k J N } 2 × δ ( S , S ) ,
ν = T u T l ,
F J = B υ J ( J + 1 ) D υ J 2 ( J + 1 ) 2 + H υ J 3 ( J + 1 ) 3 +
G υ = ω e ( υ + 1 / 2 ) ω e x e ( υ + 1 / 2 ) 2 + ω e y e ( υ + 1 / 2 ) 3 +
T υ J = i = 0 , 1 , j = 0 , 1 , Y i j ( υ + 1 / 2 ) i [ J ( J + 1 ) ] j ,
J = J q , J q + 1 , , J + q ,
r 1 r 2 r N r | n υ JM Ω Λ S Σ = ( 2 J + 1 8 π 2 ) 1 / 2 R e r | n υ | S Σ D M Ω J * ( α β γ ) ,
F ( J ) = Ũ H ( J ) U ,
F i ( J ) = n m Ũ i n H n m U m i = n m U n i H n m U m , F ( J ) = U H ( J ) U , F j ( J ) = n m U n j H n m U m j ,
S i j ( J , J ) = ( 2 J + 1 ) × | n m U n i J Ω m q , Ω n Ω m | J Ω n U m j | 2 ,
p i j ( a ) = p Σ ( ) J + S δ ( J i , J j ) δ ( Ω i , Ω j ) δ ( n i , n j ) ,
p i j ( b ) = p Σ ( ) N i δ ( N i , N j ) δ ( Λ i , Λ j ) δ ( n i , n j ) .
= 1 2 γ υ { [ J ( J + 1 ) Ω ( Ω ± 1 ) ] [ S ( S + 1 ) Σ ( Σ ± 1 ) ] } 1 / 2
υ
ν
ν

Metrics