Abstract

We propose to use a Fabry–Perot interferometer (FPI) in a pure rotational Raman lidar to isolate return signals that are due to pure rotational Raman scattering from atmospheric nitrogen against the sky background. The main idea of this instrumental approach is that a FPI is applied as a frequency comb filter with the transmission peaks accurately matched to a comb of practically equidistant lines of a pure rotational Raman spectrum (PRRS) of nitrogen molecules. Thus a matched FPI transmission comb cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines of nitrogen molecules while it is transparent to light within narrow spectral intervals about these lines. As the width of the spectral gaps between the lines of the PRRS of nitrogen molecules is ∼114 times the width of an individual spectral line, cutting out of the sky background from these gaps drastically improves the signal-to-background ratio of the pure rotational Raman lidar returns. This application of the FPI enables one to achieve daytime temperature profiling in the atmosphere with a pure rotational Raman lidar in the visible and near-UV spectral regions. We present an analysis of application of the FPI to filtering out the pure rotational Raman lidar returns against the solar background. To demonstrate the feasibility of the approach proposed, we present temperature profiles acquired during a whole-day measurement session in which a Raman lidar equipped with a FPI was used. For comparison, temperature profiles acquired with Vaisala radiosondes launched from the measurement site are also presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  2. J. A. Salzman, T. Coney, “Measurement of atmospheric temperature by Raman lidar,” presented at the Fifth Conference on Laser Radar Studies of the Atmosphere, Williamsburg, Va., 4–6 June 1973.
  3. T. Kobayasi, H. Shimizu, H. Inaba, “Laser radar technique for remote measurement of atmospheric temperature,” presented at the Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 September 1974.
  4. R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
    [CrossRef]
  5. Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef] [PubMed]
  6. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. M. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  7. D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  8. Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Hamburg, Germany, 30 August–2 September 1994.
  9. U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., document NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.
  10. A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  11. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
    [CrossRef]
  12. A. Behrendt, T. Nakamura, T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
    [CrossRef] [PubMed]
  13. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
    [CrossRef] [PubMed]
  14. Yu. F. Arshinov, S. M. Bobrovnikov, A. G. Popov, D. I. Shelefontyuk, V. K. Shumskii, “Raman-lidar detection range for contaminating gaseous species in the UV solar blind region,” Atmos. Ocean. Opt. 7, 609–612 (1994).
  15. Yu. Arshinov, S. M. Bobrovnikov, “Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
    [CrossRef]
  16. Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.
  17. J. A. McKay, “Single and tandem Fabry–Perot etalons as solar background filters for lidar,” Appl. Opt. 38, 5851–5858 (1999).
    [CrossRef]
  18. J. M. Vaughan, The Fabry–Perot Interferometer (Adam Hilger, Philadelphia, Pa., 1989), Chap. 3.
  19. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1988), Sec. 2.3.
  20. A. Weber, ed., Raman Spectroscopy of Gases and Liquids (Springer-Verlag, Berlin, 1979).
    [CrossRef]
  21. A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 491–497 (1998).
    [CrossRef]
  22. S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

2004 (1)

2002 (1)

2000 (1)

1999 (2)

1996 (1)

1994 (1)

Yu. F. Arshinov, S. M. Bobrovnikov, A. G. Popov, D. I. Shelefontyuk, V. K. Shumskii, “Raman-lidar detection range for contaminating gaseous species in the UV solar blind region,” Atmos. Ocean. Opt. 7, 609–612 (1994).

1993 (2)

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. M. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

1983 (1)

1979 (1)

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
[CrossRef]

1972 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Althausen, D.

Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.

S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

Ansmann, A.

S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.

A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 491–497 (1998).
[CrossRef]

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., document NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Arshinov, Yu

Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.

Arshinov, Yu.

Yu. Arshinov, S. M. Bobrovnikov, “Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
[CrossRef]

A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 491–497 (1998).
[CrossRef]

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., document NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Arshinov, Yu. F.

Yu. F. Arshinov, S. M. Bobrovnikov, A. G. Popov, D. I. Shelefontyuk, V. K. Shumskii, “Raman-lidar detection range for contaminating gaseous species in the UV solar blind region,” Atmos. Ocean. Opt. 7, 609–612 (1994).

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Hamburg, Germany, 30 August–2 September 1994.

S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

Baumgart, R.

Behrendt, A.

Bobrovnikov, S.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., document NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.

A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 491–497 (1998).
[CrossRef]

Bobrovnikov, S. M.

Yu. Arshinov, S. M. Bobrovnikov, “Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
[CrossRef]

Yu. F. Arshinov, S. M. Bobrovnikov, A. G. Popov, D. I. Shelefontyuk, V. K. Shumskii, “Raman-lidar detection range for contaminating gaseous species in the UV solar blind region,” Atmos. Ocean. Opt. 7, 609–612 (1994).

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Hamburg, Germany, 30 August–2 September 1994.

S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

Chanin, M.-L.

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Cohen, A.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
[CrossRef]

Coney, T.

J. A. Salzman, T. Coney, “Measurement of atmospheric temperature by Raman lidar,” presented at the Fifth Conference on Laser Radar Studies of the Atmosphere, Williamsburg, Va., 4–6 June 1973.

Cooney, J.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
[CrossRef]

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Farina, J.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
[CrossRef]

Geller, K.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
[CrossRef]

Gill, R.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
[CrossRef]

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Hernandez, G.

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1988), Sec. 2.3.

Inaba, H.

T. Kobayasi, H. Shimizu, H. Inaba, “Laser radar technique for remote measurement of atmospheric temperature,” presented at the Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 September 1974.

Kobayasi, T.

T. Kobayasi, H. Shimizu, H. Inaba, “Laser radar technique for remote measurement of atmospheric temperature,” presented at the Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 September 1974.

Lahmann, W.

Mattis, I.

S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 491–497 (1998).
[CrossRef]

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., document NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.

McKay, J. A.

Mitev, V. M.

Nakamura, T.

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Onishi, M.

Pepler, S. J.

Popov, A. G.

Yu. F. Arshinov, S. M. Bobrovnikov, A. G. Popov, D. I. Shelefontyuk, V. K. Shumskii, “Raman-lidar detection range for contaminating gaseous species in the UV solar blind region,” Atmos. Ocean. Opt. 7, 609–612 (1994).

Reichardt, J.

Salzman, J. A.

J. A. Salzman, T. Coney, “Measurement of atmospheric temperature by Raman lidar,” presented at the Fifth Conference on Laser Radar Studies of the Atmosphere, Williamsburg, Va., 4–6 June 1973.

Serikov, I.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., document NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.

A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 491–497 (1998).
[CrossRef]

Serikov, I. B.

S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

Shelefontyuk, D. I.

Yu. F. Arshinov, S. M. Bobrovnikov, A. G. Popov, D. I. Shelefontyuk, V. K. Shumskii, “Raman-lidar detection range for contaminating gaseous species in the UV solar blind region,” Atmos. Ocean. Opt. 7, 609–612 (1994).

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Hamburg, Germany, 30 August–2 September 1994.

Shimizu, H.

T. Kobayasi, H. Shimizu, H. Inaba, “Laser radar technique for remote measurement of atmospheric temperature,” presented at the Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 September 1974.

Shumskii, V. K.

Yu. F. Arshinov, S. M. Bobrovnikov, A. G. Popov, D. I. Shelefontyuk, V. K. Shumskii, “Raman-lidar detection range for contaminating gaseous species in the UV solar blind region,” Atmos. Ocean. Opt. 7, 609–612 (1994).

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Hamburg, Germany, 30 August–2 September 1994.

Thomas, L.

Tsuda, T.

Vaughan, G.

Vaughan, J. M.

J. M. Vaughan, The Fabry–Perot Interferometer (Adam Hilger, Philadelphia, Pa., 1989), Chap. 3.

Wandinger, U.

S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 491–497 (1998).
[CrossRef]

Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., document NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Wareing, D. P.

Weitkamp, C.

Zeyn, J.

Zuev, V. E.

Appl. Opt. (7)

Atmos. Ocean. Opt. (1)

Yu. F. Arshinov, S. M. Bobrovnikov, A. G. Popov, D. I. Shelefontyuk, V. K. Shumskii, “Raman-lidar detection range for contaminating gaseous species in the UV solar blind region,” Atmos. Ocean. Opt. 7, 609–612 (1994).

IEEE Trans. Geosci. Remote Sens. (1)

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Appl. Meteorol. (2)

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 8, 225–226 (1979).
[CrossRef]

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Opt. Lett. (1)

Other (10)

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Hamburg, Germany, 30 August–2 September 1994.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman lines at 532 nm,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., document NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

J. A. Salzman, T. Coney, “Measurement of atmospheric temperature by Raman lidar,” presented at the Fifth Conference on Laser Radar Studies of the Atmosphere, Williamsburg, Va., 4–6 June 1973.

T. Kobayasi, H. Shimizu, H. Inaba, “Laser radar technique for remote measurement of atmospheric temperature,” presented at the Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 September 1974.

J. M. Vaughan, The Fabry–Perot Interferometer (Adam Hilger, Philadelphia, Pa., 1989), Chap. 3.

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1988), Sec. 2.3.

A. Weber, ed., Raman Spectroscopy of Gases and Liquids (Springer-Verlag, Berlin, 1979).
[CrossRef]

A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, U. Wandinger, “Double-grating monochromator for a pure rotational Raman lidar,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 491–497 (1998).
[CrossRef]

S. M. Bobrovnikov, Yu. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, U. Wandinger, “Daytime temperature profiling in the troposphere with a pure rotational Raman lidar,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, G. Vallée, eds., reviewed and revised papers presented at the 21st International Laser Radar Conference, Québec, Canada, 8–12 July 2002 (Defence R&D Canada–Valcartier, Val Bélair, Québec, Canada, 2002), pp. 717–720.

Yu Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, U. Wandinger, “Spectrally absolute instrumental approach to isolate pure rotational Raman lidar returns from nitrogen molecules of the atmosphere,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds., selected papers presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000 (Edition Ecole Polytechnique, Paris, France, 2001), pp. 121–124.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Temperature profiles of the atmosphere acquired on 15 November 1999 (local time, 21:54:52–23:27:54), at the IfT, Leipzig, Germany, with a Raman lidar (solid curve) and a Vaisala radiosonde (dashed curve). Error bars show the uncertainty (±1 standard deviation) in temperature retrieved from lidar data. The errors are due mainly to statistics of the lidar returns. The range resolution of lidar measurements varied from 60 m at altitudes below ∼3 km to 500 m near the tropopause.

Fig. 2
Fig. 2

Typical daytime and nighttime pure rotational Raman lidar return signals acquired with a range resolution of 60 m. Measurement time for both nighttime and daytime returns was 40 min.

Fig. 3
Fig. 3

Instrumental function of the monochromator.

Fig. 4
Fig. 4

PRRS of molecular nitrogen and the transmission comb of a Fabry–Perot interferometer calculated for the exciting radiation at 532.118-nm wavelength.

Fig. 5
Fig. 5

Schematic view of the function TFPIid( ν , r, a, d, θ) within an arbitrary frequency range slightly exceeding one period of the Airy function, or free spectral range Δ ν FSR, of a FPI.

Fig. 6
Fig. 6

(a) Factor Esbrid as a function of the FPI plates’ reflectivity, (b) FPI transmission as a function of the FPI plates’ reflectivity at several absorption and scattering losses of the mirrors.

Fig. 7
Fig. 7

Weighted SBR enhancement factor Esbrwid(r, a) as a function of the reflectivity of ideal FPI plates and absorption and scattering loss of the FPI plates’ substrate.

Fig. 8
Fig. 8

Formation of a collimated beam incident upon a FPI.

Fig. 9
Fig. 9

SBR enhancement factor of a FPI illuminated with a light beam diverging within full angle 2θm = 0.004 rad as a function of the FPI plates’ reflectivity.

Fig. 10
Fig. 10

Weighted SBR enhancement factor of a FPI illuminated with a light beam diverging within full angle 2θm = 0.004 rad as a function of the FPI plates’ reflectivity.

Fig. 11
Fig. 11

SBR enhancement factor as a function of the FPI plates’ true reflectivity and the effective finesse of the interferometer.

Fig. 12
Fig. 12

Weighted SBR enhancement factor as a function of the FPI plates’ true reflectivity and the effective finesse of the interferometer.

Fig. 13
Fig. 13

Optical arrangement of the FPI-based pure rotational Raman lidar channel of the combined Raman and elastic scattering lidar facility at the IfT, Leipzig, Germany. PMTs, photomultipliers.

Fig. 14
Fig. 14

Lidar return signals recorded during daytime at the IfT, Leipzig, under almost clear-sky conditions on 29 November 1999: local time, 14:45:42; duration, 41 min. The lidar returns were acquired with a range resolution of 60 m. (Raman lidar returns were isolated only with the double-grating monochromator.)

Fig. 15
Fig. 15

Lidar return signals recorded during daytime under almost clear-sky conditions on 30 November 1999 at the IfT, Leipzig: local time, 15:01:32; duration, 41 min. The lidar returns were acquired with a range resolution of 60 m. (Raman lidar returns were isolated with the double-grating monochromator and a FPI installed in front of it.)

Fig. 16
Fig. 16

Daytime temperature profiles of the atmosphere acquired on 23 April 2001 (a) at 14:55–15:56 UTC with the IfT lidar and a Vaisala radiosonde launched at 15:17 UTC from the measurement site and (b) at 13:54–21:31 UTC with the lidar (averaging time was 1 h for each profile shown). Error bars in (a) show the uncertainty (±1 standard deviation) in temperature retrieved from lidar data. The errors are due mainly to statistics of the lidar returns. The range resolution of the lidar measurements varied from 60 m at altitudes below ∼3 km to 500 m near the tropopause. No error bars are shown in (b), as those are within the scatter of the lines and have similar values as in (a).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

T FPlid ( ν , r , a , d , n , θ ) = ( 1 a 1 r ) 2 × { 1 + 4 r ( 1 r ) 2 sin 2 [ 2 π ν d n cos ( θ ) ] } 1 ,
( 1 a 1 r ) 2
E sbrid ( r ) = Δ ν FSR Δ ν FSR { 1 + 4 r ( 1 r ) 2 sin 2 [ 2 π ν d n cos ( θ ) ] } 1 d ν ,
E sbrid ( r ) = ( 1 + r ) / ( 1 r ) .
E sbrwid ( r , a ) = ( 1 a 1 r ) 2 ( 1 + r 1 r ) ,
T ( ν , r , a , d , n , θ m ) = T pkid ( r , a ) 2 θ m 2 × 0 θ m { 1 + 4 r ( 1 r ) 2 × sin 2 [ 2 π ν d n cos ( θ ) ] } 1 sin θ d θ ,
T pk ( ν i , r , a , d , n , θ m ) T ( ν i , r , a , d , n , θ m ) ,
E sbr ( r , a , θ m ) = T ( ν i , r , a , d , θ m ) Δ ν FSR Δ ν FSR T ( ν , r , a , d , θ m ) d ν .
E sbrW ( r , a , θ m ) = T 2 ( ν i , r , a , d , θ m ) Δ ν FSR Δ ν FSR T ( ν , r , a , d , θ m ) d ν .
F r = π r ( 1 r ) .
4 r ( 1 r ) 2 = ( 2 π F r ) 2 .
E sbrid ( r ) = ( 1 + r ) ( 1 r ) = [ 1 + 4 r ( 1 r ) 2 ] 1 / 2 = [ 1 + ( 2 π F r ) 2 ] 1 / 2 2 π F r .
F e = π r e ( 1 r e ) .
F e ( r , F d ) = [ 1 F r 2 ( r ) + 1 F d 2 ] 1 / 2 ,
T pk ( r , F d ) = T pkid ( r ) F e ( r , F d ) F r ( r ) ,
E sbre ( r , F d ) 2 π F e ( r , F d ) .
E sbreW ( r , F d ) = T pkid ( r ) 2 F e 2 ( r , F d ) π F r ( r ) .
C FPI ( r ) = ( 1 + r 1 r ) 2
C FPI ( r ) = E sbrid 2 ( r ) .

Metrics