Abstract

Liquid-crystal- (LC-) based rotatable wave plates exhibiting phase retardation that is electrically controllable through more than 2π and rotatable azimuthal orientation of the optical axis have been achieved. One outer surface of the LC cell is coated with a transparent electrode; this controls the phase retardation. A single wave plate of this type is shown to be capable of converting an arbitrary input polarization to any desired polarization, and its applicability to feedback polarization control is demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ohkoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. LT-3, 1232–1237 (1985).
    [CrossRef]
  2. D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
    [CrossRef]
  3. T. Takahashi, T. Imai, M. Aiki, “Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
    [CrossRef]
  4. T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.
  5. N. G. Walker, G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
    [CrossRef]
  6. H. Shimizu, S. Yamazaki, T. Ono, K. Emura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1223 (1991).
    [CrossRef]
  7. S. H. Rumbaugh, M. D. Jones, L. W. Casperson, “Polarization control for coherent fiber-optic system using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
    [CrossRef]
  8. K. Hirabayashi, C. Amano, “Feed-forward continuous and complete polarization control with a PLZT rotatable-variable waveplate and in-line polarimeter,” J. Lightwave Technol. 21, 1920–1932 (2003).
    [CrossRef]
  9. K. Hirabayashi, C. Amano, “Liquid-crystal polarization stabilizers on fiber arrays,” J. Lightwave Technol. 21, 2162–2171 (2003).
    [CrossRef]
  10. T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave. Technol. 17, 885–890 (1999).
    [CrossRef]
  11. L. Dupont, J. L. de Bougrenetde de la Tocnaye, M. Le Gall, D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113–119 (2000).
    [CrossRef]
  12. M. Kawamura, S. Taguchi, S. Sato, “Electro-optical properties of liquid-crystal polarization-control devices,” presented at the annual meeting of the Japanese Liquid Crystal Society, Omiya Sonic City, Saitama, Japan, 25–27 September2001.
  13. Y. Ohtera, T. Chiba, S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photon. Technol. Lett. 8, 390–392 (1996).
    [CrossRef]
  14. B. R. Acharya, L. Moller, K. W. Baldwin, R. A. MacHarrie, R. A. Stepnoski, C. C. Huang, R. Pindak, J. A. Rogers, “In-line liquid-crystal microcell wave plates and their application for high-speed, reset-free polarization mode dispersion compensation in 40-Gbit/s systems,” Appl. Opt. 42, 5407–5412 (2003).
    [CrossRef] [PubMed]
  15. K. Hirabayashi, C. Amano, “A compact in-line polarimeter using a Faraday rotator,” IEEE Photon. Technol. Lett. 15, 1740–1742 (2003).
    [CrossRef]

2003

2000

L. Dupont, J. L. de Bougrenetde de la Tocnaye, M. Le Gall, D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

1999

T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave. Technol. 17, 885–890 (1999).
[CrossRef]

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

1996

Y. Ohtera, T. Chiba, S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photon. Technol. Lett. 8, 390–392 (1996).
[CrossRef]

1994

T. Takahashi, T. Imai, M. Aiki, “Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

1991

H. Shimizu, S. Yamazaki, T. Ono, K. Emura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1223 (1991).
[CrossRef]

1990

S. H. Rumbaugh, M. D. Jones, L. W. Casperson, “Polarization control for coherent fiber-optic system using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[CrossRef]

N. G. Walker, G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

1985

T. Ohkoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. LT-3, 1232–1237 (1985).
[CrossRef]

Acharya, B. R.

Aiki, M.

T. Takahashi, T. Imai, M. Aiki, “Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

Amano, C.

Baldwin, K. W.

Bordogna, G.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

Casperson, L. W.

S. H. Rumbaugh, M. D. Jones, L. W. Casperson, “Polarization control for coherent fiber-optic system using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[CrossRef]

Chiba, T.

T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave. Technol. 17, 885–890 (1999).
[CrossRef]

Y. Ohtera, T. Chiba, S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photon. Technol. Lett. 8, 390–392 (1996).
[CrossRef]

de Bougrenetde de la Tocnaye, J. L.

L. Dupont, J. L. de Bougrenetde de la Tocnaye, M. Le Gall, D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Dupont, L.

L. Dupont, J. L. de Bougrenetde de la Tocnaye, M. Le Gall, D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Emura, K.

H. Shimizu, S. Yamazaki, T. Ono, K. Emura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1223 (1991).
[CrossRef]

Epworth, R. E.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

Farley, K. S.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

Fukuchi, K.

T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.

Hadjifotiou, A. P.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

Hirabayashi, K.

Huang, C. C.

Imai, T.

T. Takahashi, T. Imai, M. Aiki, “Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

Ito, T.

T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.

Jones, M. D.

S. H. Rumbaugh, M. D. Jones, L. W. Casperson, “Polarization control for coherent fiber-optic system using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[CrossRef]

Kawakami, S.

T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave. Technol. 17, 885–890 (1999).
[CrossRef]

Y. Ohtera, T. Chiba, S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photon. Technol. Lett. 8, 390–392 (1996).
[CrossRef]

Kawamura, M.

M. Kawamura, S. Taguchi, S. Sato, “Electro-optical properties of liquid-crystal polarization-control devices,” presented at the annual meeting of the Japanese Liquid Crystal Society, Omiya Sonic City, Saitama, Japan, 25–27 September2001.

Le Gall, M.

L. Dupont, J. L. de Bougrenetde de la Tocnaye, M. Le Gall, D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Lee, W. S.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

MacHarrie, R. A.

Moller, L.

Ogasahara, D.

T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.

Ohhira, R.

T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.

Ohkoshi, T.

T. Ohkoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. LT-3, 1232–1237 (1985).
[CrossRef]

Ohtera, Y.

T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave. Technol. 17, 885–890 (1999).
[CrossRef]

Y. Ohtera, T. Chiba, S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photon. Technol. Lett. 8, 390–392 (1996).
[CrossRef]

Ono, T.

H. Shimizu, S. Yamazaki, T. Ono, K. Emura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1223 (1991).
[CrossRef]

T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.

Penninckx, D.

L. Dupont, J. L. de Bougrenetde de la Tocnaye, M. Le Gall, D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Pindak, R.

Rogers, J. A.

Rumbaugh, S. H.

S. H. Rumbaugh, M. D. Jones, L. W. Casperson, “Polarization control for coherent fiber-optic system using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[CrossRef]

Sato, S.

M. Kawamura, S. Taguchi, S. Sato, “Electro-optical properties of liquid-crystal polarization-control devices,” presented at the annual meeting of the Japanese Liquid Crystal Society, Omiya Sonic City, Saitama, Japan, 25–27 September2001.

Sekiya, K.

T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.

Shaw, B. J.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

Shimizu, H.

H. Shimizu, S. Yamazaki, T. Ono, K. Emura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1223 (1991).
[CrossRef]

Stepnoski, R. A.

Taguchi, S.

M. Kawamura, S. Taguchi, S. Sato, “Electro-optical properties of liquid-crystal polarization-control devices,” presented at the annual meeting of the Japanese Liquid Crystal Society, Omiya Sonic City, Saitama, Japan, 25–27 September2001.

Takahashi, T.

T. Takahashi, T. Imai, M. Aiki, “Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

Walker, G. R.

N. G. Walker, G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Walker, N. G.

N. G. Walker, G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Watley, D. A.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

Yamazaki, S.

H. Shimizu, S. Yamazaki, T. Ono, K. Emura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1223 (1991).
[CrossRef]

Appl. Opt.

Electron. Lett.

D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999).
[CrossRef]

T. Takahashi, T. Imai, M. Aiki, “Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Ohtera, T. Chiba, S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photon. Technol. Lett. 8, 390–392 (1996).
[CrossRef]

K. Hirabayashi, C. Amano, “A compact in-line polarimeter using a Faraday rotator,” IEEE Photon. Technol. Lett. 15, 1740–1742 (2003).
[CrossRef]

J. Lightwave Technol.

T. Ohkoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. LT-3, 1232–1237 (1985).
[CrossRef]

N. G. Walker, G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

H. Shimizu, S. Yamazaki, T. Ono, K. Emura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1223 (1991).
[CrossRef]

S. H. Rumbaugh, M. D. Jones, L. W. Casperson, “Polarization control for coherent fiber-optic system using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[CrossRef]

K. Hirabayashi, C. Amano, “Feed-forward continuous and complete polarization control with a PLZT rotatable-variable waveplate and in-line polarimeter,” J. Lightwave Technol. 21, 1920–1932 (2003).
[CrossRef]

K. Hirabayashi, C. Amano, “Liquid-crystal polarization stabilizers on fiber arrays,” J. Lightwave Technol. 21, 2162–2171 (2003).
[CrossRef]

J. Lightwave. Technol.

T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave. Technol. 17, 885–890 (1999).
[CrossRef]

Opt. Commun.

L. Dupont, J. L. de Bougrenetde de la Tocnaye, M. Le Gall, D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Other

M. Kawamura, S. Taguchi, S. Sato, “Electro-optical properties of liquid-crystal polarization-control devices,” presented at the annual meeting of the Japanese Liquid Crystal Society, Omiya Sonic City, Saitama, Japan, 25–27 September2001.

T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Top and cross-sectional views and (b) a simple schematic of the structure of the LC-based rotatable wave plate with variable phase retardation.

Fig. 2
Fig. 2

Estimated arrow maps of the electric field within and around the cross shape created by the four in-plane electrodes for θ = 0°, 15°, 30°, 45°.

Fig. 3
Fig. 3

Cross-sectional arrow maps of estimated electric field in the LC rotatable wave plate when V is applied to the external ITO electrode.

Fig. 4
Fig. 4

Estimated dependence of phase retardation on applied perpendicular voltage V for the LC-based rotatable wave plate.

Fig. 5
Fig. 5

Estimated Stokes vectors (S1, S2, S3) of output light plotted on a Poincaré sphere when input light in (a) horizontal linear and (b) circular polarization is supplied to the LC-based rotatable wave plate with variable phase retardation.

Fig. 6
Fig. 6

Polarizing micrographs of the aperture of the LC-based rotatable wave plate for voltages V = 20 Vrms and V = 80 Vrms, with the latter applied in directions θ = 0°, 15°, 30°, 45°, 60°, 75°, 90°.

Fig. 7
Fig. 7

Dependence of phase retardation on (a) plane-parallel voltage V and (b) perpendicular voltage V for θ = 0°.

Fig. 8
Fig. 8

Traces on the Poincaré sphere when the LC rotatable plate works as (a) a HWP and (b) a QWP. (c) Coverage of the whole Poincaré sphere by a single LC-based rotatable wave plate converting one input polarization into arbitrary output polarizations. Circles, front surfaces; triangles, back surfaces.

Fig. 9
Fig. 9

Traces of polarization conversion from the horizontally linear polarization (1, 0, 0) to the 45° linear polarization (0, 1, 0) on the Poincaré sphere along with the corresponding voltages applied to the single LC-based rotatable wave plate.

Fig. 10
Fig. 10

(a) Setup for feedback polarization control and (b) stabilization of the output in circular polarization (0, 0, 1) by the single LC-based rotatable wave plate. DFB-LD, distributed-feedback laser diode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n e n o ( n e 2 cos 2 ϕ + n o 2 sin 2 ϕ ) 1 / 2 n o .
[ 1 0 0 0 0 1 ( 1 cos Δ ) sin 2 2 Θ ( 1 cos Δ ) sin 2 Θ cos 2 Θ sin Δ sin 2 Θ 0 ( 1 cos Δ ) sin 2 Θ cos 2 Θ 1 ( 1 cos Δ ) cos 2 2 Θ sin Δ cos 2 Θ 0 sin Δ sin 2 Θ sin Δ cos 2 Θ cos Δ ] .

Metrics