Abstract

We demonstrate wavelength tuning in single-wavelength and multiwavelength semiconductor fiber ring lasers that are mode locked with an optically injected control signal. A semiconductor optical amplifier is used to provide gain as well as to function as an optically controlled mode-locking element. Linearly chirped fiber Bragg gratings—single or superimposed—are used to define the lasing wavelengths as well as to provide wavelength tunability and allow for multiwavelength operation. We obtain pulses of tens of picoseconds in duration when we inject a sinusoidal optical control signal into the laser cavity, and we can tune the lasing wavelength(s) over the reflection bandwidth(s) of the grating(s) by simply changing the frequency of the injected control signal.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takahashi, H. Toba, Y. Inoue, “Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,” Electron. Lett. 30, 44–45 (1994).
    [CrossRef]
  2. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
    [CrossRef]
  3. O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
    [CrossRef]
  4. J. Sun, J. Qiu, D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
    [CrossRef]
  5. J.-N. Maran, S. LaRochelle, P. Besnard, “C-band multiwavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218, 81–86 (2003).
    [CrossRef]
  6. K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
    [CrossRef]
  7. J. He, K. T. Chan, “All-optical actively mode-locked fiber ring laser based on cross-gain modulation in SOA,” Electron. Lett. 38, 1504–1505 (2002).
    [CrossRef]
  8. J. He, K. T. Chan, “Generation and wavelength switching of picosecond pulses by optically modulating a semiconductor optical amplifier in a fiber laser with optical delay line,” IEEE Photon. Technol. Lett. 15, 798–800 (2003).
    [CrossRef]
  9. K. L. Lee, C. Shu, “Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser,” IEEE Photon. Technol. Lett. 15, 513–515 (2003).
    [CrossRef]
  10. K. Vlachos, C. Bintjas, N. Pleros, H. Avramopoulos, “Ultrafast semiconductor-based fiber laser source,” IEEE J. Sel. Top. Quantum Electron. 10, 147–154 (2004).
    [CrossRef]
  11. K. Tamura, N. Nakazawa, “Dispersion-tuned harmonically mode-locked fiber ring laser for self-stabilization to an external clock,” Opt. Lett. 21, 1984–1986 (1996).
    [CrossRef] [PubMed]
  12. C. Shu, Y. Zhao, “Characteristics of dispersion-tuning in harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 10, 1106–1108 (1998).
    [CrossRef]
  13. S. Li, K. T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10, 799–801 (1998).
    [CrossRef]
  14. S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
    [CrossRef]
  15. K. Chan, C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
    [CrossRef]
  16. G.-R. Lin, P.-S. Hsueh, H.-H. Wu, Y.-S. Liao, “The detuning characteristics of rational harmonic mode-locked semiconductor optical amplifier fiber-ring laser using backward optical sinusoidal-wave injection modulation,” J. Lightwave Technol. 23, 1325–1333 (2005).
    [CrossRef]
  17. J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003).
    [CrossRef]

2005

2004

K. Vlachos, C. Bintjas, N. Pleros, H. Avramopoulos, “Ultrafast semiconductor-based fiber laser source,” IEEE J. Sel. Top. Quantum Electron. 10, 147–154 (2004).
[CrossRef]

2003

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003).
[CrossRef]

J.-N. Maran, S. LaRochelle, P. Besnard, “C-band multiwavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218, 81–86 (2003).
[CrossRef]

J. He, K. T. Chan, “Generation and wavelength switching of picosecond pulses by optically modulating a semiconductor optical amplifier in a fiber laser with optical delay line,” IEEE Photon. Technol. Lett. 15, 798–800 (2003).
[CrossRef]

K. L. Lee, C. Shu, “Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser,” IEEE Photon. Technol. Lett. 15, 513–515 (2003).
[CrossRef]

2002

J. He, K. T. Chan, “All-optical actively mode-locked fiber ring laser based on cross-gain modulation in SOA,” Electron. Lett. 38, 1504–1505 (2002).
[CrossRef]

2000

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

J. Sun, J. Qiu, D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

1999

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

K. Chan, C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
[CrossRef]

1998

C. Shu, Y. Zhao, “Characteristics of dispersion-tuning in harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 10, 1106–1108 (1998).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10, 799–801 (1998).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
[CrossRef]

1996

K. Tamura, N. Nakazawa, “Dispersion-tuned harmonically mode-locked fiber ring laser for self-stabilization to an external clock,” Opt. Lett. 21, 1984–1986 (1996).
[CrossRef] [PubMed]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

1994

H. Takahashi, H. Toba, Y. Inoue, “Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,” Electron. Lett. 30, 44–45 (1994).
[CrossRef]

Avramopoulos, H.

K. Vlachos, C. Bintjas, N. Pleros, H. Avramopoulos, “Ultrafast semiconductor-based fiber laser source,” IEEE J. Sel. Top. Quantum Electron. 10, 147–154 (2004).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

Azaña, J.

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003).
[CrossRef]

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Besnard, P.

J.-N. Maran, S. LaRochelle, P. Besnard, “C-band multiwavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218, 81–86 (2003).
[CrossRef]

Bintjas, C.

K. Vlachos, C. Bintjas, N. Pleros, H. Avramopoulos, “Ultrafast semiconductor-based fiber laser source,” IEEE J. Sel. Top. Quantum Electron. 10, 147–154 (2004).
[CrossRef]

Blondel, M.

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Chan, K.

K. Chan, C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
[CrossRef]

Chan, K. T.

J. He, K. T. Chan, “Generation and wavelength switching of picosecond pulses by optically modulating a semiconductor optical amplifier in a fiber laser with optical delay line,” IEEE Photon. Technol. Lett. 15, 798–800 (2003).
[CrossRef]

J. He, K. T. Chan, “All-optical actively mode-locked fiber ring laser based on cross-gain modulation in SOA,” Electron. Lett. 38, 1504–1505 (2002).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10, 799–801 (1998).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
[CrossRef]

Chen, L. R.

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003).
[CrossRef]

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Deparis, O.

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Feinberg, J.

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

He, J.

J. He, K. T. Chan, “Generation and wavelength switching of picosecond pulses by optically modulating a semiconductor optical amplifier in a fiber laser with optical delay line,” IEEE Photon. Technol. Lett. 15, 798–800 (2003).
[CrossRef]

J. He, K. T. Chan, “All-optical actively mode-locked fiber ring laser based on cross-gain modulation in SOA,” Electron. Lett. 38, 1504–1505 (2002).
[CrossRef]

Houbavlis, T.

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

Hsueh, P.-S.

Huang, D.

J. Sun, J. Qiu, D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

Ibsen, M.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Inoue, Y.

H. Takahashi, H. Toba, Y. Inoue, “Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,” Electron. Lett. 30, 44–45 (1994).
[CrossRef]

Kiyan, R.

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Kockaert, P.

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003).
[CrossRef]

LaRochelle, S.

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003).
[CrossRef]

J.-N. Maran, S. LaRochelle, P. Besnard, “C-band multiwavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218, 81–86 (2003).
[CrossRef]

Lee, K. L.

K. L. Lee, C. Shu, “Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser,” IEEE Photon. Technol. Lett. 15, 513–515 (2003).
[CrossRef]

Li, S.

S. Li, K. T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10, 799–801 (1998).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
[CrossRef]

Liao, Y.-S.

Lin, G.-R.

Maran, J.-N.

J.-N. Maran, S. LaRochelle, P. Besnard, “C-band multiwavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218, 81–86 (2003).
[CrossRef]

Mégret, P.

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Nakazawa, N.

Pleros, N.

K. Vlachos, C. Bintjas, N. Pleros, H. Avramopoulos, “Ultrafast semiconductor-based fiber laser source,” IEEE J. Sel. Top. Quantum Electron. 10, 147–154 (2004).
[CrossRef]

Pottiez, O.

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Qiu, J.

J. Sun, J. Qiu, D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

Salik, E.

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Shu, C.

K. L. Lee, C. Shu, “Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser,” IEEE Photon. Technol. Lett. 15, 513–515 (2003).
[CrossRef]

K. Chan, C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
[CrossRef]

C. Shu, Y. Zhao, “Characteristics of dispersion-tuning in harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 10, 1106–1108 (1998).
[CrossRef]

Slavík, R.

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003).
[CrossRef]

Starodubov, D.

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Sun, J.

J. Sun, J. Qiu, D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

Takahashi, H.

H. Takahashi, H. Toba, Y. Inoue, “Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,” Electron. Lett. 30, 44–45 (1994).
[CrossRef]

Tamura, K.

Toba, H.

H. Takahashi, H. Toba, Y. Inoue, “Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,” Electron. Lett. 30, 44–45 (1994).
[CrossRef]

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Vlachos, K.

K. Vlachos, C. Bintjas, N. Pleros, H. Avramopoulos, “Ultrafast semiconductor-based fiber laser source,” IEEE J. Sel. Top. Quantum Electron. 10, 147–154 (2004).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

Wu, H.-H.

Zhao, Y.

C. Shu, Y. Zhao, “Characteristics of dispersion-tuning in harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 10, 1106–1108 (1998).
[CrossRef]

Zoiros, K.

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

Appl. Phys. Lett.

S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
[CrossRef]

K. Chan, C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).
[CrossRef]

Electron. Lett.

H. Takahashi, H. Toba, Y. Inoue, “Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,” Electron. Lett. 30, 44–45 (1994).
[CrossRef]

J. He, K. T. Chan, “All-optical actively mode-locked fiber ring laser based on cross-gain modulation in SOA,” Electron. Lett. 38, 1504–1505 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Vlachos, C. Bintjas, N. Pleros, H. Avramopoulos, “Ultrafast semiconductor-based fiber laser source,” IEEE J. Sel. Top. Quantum Electron. 10, 147–154 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Shu, Y. Zhao, “Characteristics of dispersion-tuning in harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 10, 1106–1108 (1998).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10, 799–801 (1998).
[CrossRef]

J. He, K. T. Chan, “Generation and wavelength switching of picosecond pulses by optically modulating a semiconductor optical amplifier in a fiber laser with optical delay line,” IEEE Photon. Technol. Lett. 15, 798–800 (2003).
[CrossRef]

K. L. Lee, C. Shu, “Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser,” IEEE Photon. Technol. Lett. 15, 513–515 (2003).
[CrossRef]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Mégret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. Sun, J. Qiu, D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

J.-N. Maran, S. LaRochelle, P. Besnard, “C-band multiwavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218, 81–86 (2003).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of optically mode-locked semiconductor fiber ring laser: TLS, tunable laser source; BPF, bandpass filter; EOM, electro-optic modulator; PC, polarization controller; VOA, variable optical attenuator.

Fig. 2
Fig. 2

Output pulse characteristics as a function of (a) SOA bias current (with P avg control = 2.9 mw) and (b) control signal average power (with ISOA = 135 mA). In all cases the control signal wavelength is 1555 nm: BW, bandwidth; ΔνΔt, time − bandwidth product.

Fig. 3
Fig. 3

Output spectra and waveforms for different control signal wavelengths: 1540 nm (solid curve), 1548 nm (dashed curve), and 1555 nm (dotted curve). The control signal average power is optimized for each of the control signal wavelengths. The small peaks correspond to the control signal.

Fig. 4
Fig. 4

(a) Tuning and (b) output pulse characteristics of the single-wavelength mode-locked SFRL.

Fig. 5
Fig. 5

Spectral and temporal characteristics of the output pulses for an fmod of (a) 5254.842 MHz, (b) 5256.641 MHz, and (c) 5259.335 MHz. Inset, typical autocorrelation trace (solid curve) with a sech2 fit (dashed curve). The drop-off in the autocorrelation trace is due to the fact that it extends beyond the time window of the autocorrelator.

Fig. 6
Fig. 6

Output pulse characteristics as a function of (a) SOA bias current (with P avg control = 3.3 mw) and (b) control signal average power (with ISOA = 135 mA). In all cases the control signal wavelength is 1555 nm: BW, bandwidth; ΔνΔt, time–bandwidth product; λ1 = 1545.1 nm (filled symbols); λ2 = 1551.1 nm (open symbols).

Fig. 7
Fig. 7

Output spectra and waveforms for different control signal wavelengths: 1540 nm (solid curve), 1548 nm (dashed curve), and 1555 nm (dotted curve). The control signal average power is optimized for each of the control signal wavelengths. The small peaks correspond to the control signal.

Fig. 8
Fig. 8

(a) Tuning and (b) output pulse characteristics of the dual-wavelength mode-locked SFRL.

Fig. 9
Fig. 9

Typical spectral and temporal characteristics of the laser output with dual-wavelength operation for an fmod of (a) 5257.426 MHz, (b) 5260.166 MHz, and (c) 5263.939 MHz. The insets show the output pulses at each lasing wavelength, obtained with a bandpass filter external to the laser, and the output waveform after propagation through a length of single-mode fiber.

Metrics