Abstract

The high intensities provided by short-pulse Ti:sapphire laser systems call for the utilization of appropriate eye-protecting materials. We summarize the representative results of our characterization measurements on optical filters employed for laser radiation protection. Physical effects are discussed that influence the transmission (and thus the protective properties) of the investigated materials. Potential hazard factors have been recognized and characterized. We make recommendations to the extension of the current characterization methods and illustrate the acquired information in the form of operation charts.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koschinski, A. Schirmacher, E. Sutter, “Induced transmittance of eye-protective laser filters,” J. Laser Appl. 10, 126–130 (1998).
    [CrossRef]
  2. A. Schirmacher, E. Sutter, “Induced transmittance in alexandrite laser eye-protectors—a survey of different types of laser filters,” Opt. Laser Technol. 33, 359–362 (2001).
    [CrossRef]
  3. S. Martin, J. Krüger, A. Hertwig, A. Fiedler, W. Kautek, “Femtosecond laser interaction with protection materials,” Appl. Surf. Sci. 208–209, 333–339 (2003).
    [CrossRef]
  4. M. Lenner, A. Fiedler, Ch. Spielmann, “Reliability of laser safety eye wear in the femtosecond regime,” Opt. Express 12, 1329–1334 (2004).
    [CrossRef] [PubMed]
  5. A. Hertwig, S. Martin, J. Krüger, W. Kautek, “Interaction area dependence of the ablation threshold of ion-doped glass,” Thin Solid Films 453–454, 527–530 (2004).
    [CrossRef]
  6. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22, 1562–1565 (1997).
    [CrossRef]
  7. J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
    [CrossRef]
  8. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [CrossRef]
  9. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
    [CrossRef]
  10. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
    [CrossRef]
  11. R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
    [CrossRef] [PubMed]
  12. R. Srinivasan, E. Sutcliffe, B. Baren, “Ablation and etching of polymethylmethaacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285–1287 (1987).
    [CrossRef]
  13. J. E. Andrew, P. E. Dyer, D. Forster, P. H. Key, “Direct etching of polymeric materials using a XeCl laser,” Appl. Phys. Lett. 43, 717–719 (1983).
    [CrossRef]
  14. G. B. Blanchet, C. R. Fincher, “Laser induced unzipping: a thermal route to polymer ablation,” Appl. Phys. Lett. 65, 1311–1313 (1994).
    [CrossRef]
  15. S. Baudach, J. Bonse, J. Krüger, W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
    [CrossRef]
  16. M. Lenner, Ch. Spielmann, “Reliability of polycarbonate filters in the femtosecond regime,” Appl. Phys. B 78, 689–692 (2004).
    [CrossRef]
  17. We are preparing a manuscript to be called “Time-resolved saturation dynamics of doped polycarbonate.”
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), pp. 75–102.
  19. M. Kolesik, G. Katona, J. V. Moloney, E. M. Wright, “Theory and simulation of supercontinuum generation in transparent bulk media,” Appl. Phys. B 77, 185–195 (2003).
    [CrossRef]
  20. International Commission on Non-Ionizing Radiation Protection, “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 µm,” Health Phys. 79, 431–440 (2000).
    [CrossRef]

2004 (3)

M. Lenner, Ch. Spielmann, “Reliability of polycarbonate filters in the femtosecond regime,” Appl. Phys. B 78, 689–692 (2004).
[CrossRef]

A. Hertwig, S. Martin, J. Krüger, W. Kautek, “Interaction area dependence of the ablation threshold of ion-doped glass,” Thin Solid Films 453–454, 527–530 (2004).
[CrossRef]

M. Lenner, A. Fiedler, Ch. Spielmann, “Reliability of laser safety eye wear in the femtosecond regime,” Opt. Express 12, 1329–1334 (2004).
[CrossRef] [PubMed]

2003 (3)

S. Martin, J. Krüger, A. Hertwig, A. Fiedler, W. Kautek, “Femtosecond laser interaction with protection materials,” Appl. Surf. Sci. 208–209, 333–339 (2003).
[CrossRef]

M. Kolesik, G. Katona, J. V. Moloney, E. M. Wright, “Theory and simulation of supercontinuum generation in transparent bulk media,” Appl. Phys. B 77, 185–195 (2003).
[CrossRef]

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

2001 (1)

A. Schirmacher, E. Sutter, “Induced transmittance in alexandrite laser eye-protectors—a survey of different types of laser filters,” Opt. Laser Technol. 33, 359–362 (2001).
[CrossRef]

2000 (2)

S. Baudach, J. Bonse, J. Krüger, W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[CrossRef]

International Commission on Non-Ionizing Radiation Protection, “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 µm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

1999 (1)

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

1998 (2)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

W. Koschinski, A. Schirmacher, E. Sutter, “Induced transmittance of eye-protective laser filters,” J. Laser Appl. 10, 126–130 (1998).
[CrossRef]

1997 (1)

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

1994 (1)

G. B. Blanchet, C. R. Fincher, “Laser induced unzipping: a thermal route to polymer ablation,” Appl. Phys. Lett. 65, 1311–1313 (1994).
[CrossRef]

1987 (1)

R. Srinivasan, E. Sutcliffe, B. Baren, “Ablation and etching of polymethylmethaacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285–1287 (1987).
[CrossRef]

1986 (1)

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

1983 (1)

J. E. Andrew, P. E. Dyer, D. Forster, P. H. Key, “Direct etching of polymeric materials using a XeCl laser,” Appl. Phys. Lett. 43, 717–719 (1983).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), pp. 75–102.

Andrew, J. E.

J. E. Andrew, P. E. Dyer, D. Forster, P. H. Key, “Direct etching of polymeric materials using a XeCl laser,” Appl. Phys. Lett. 43, 717–719 (1983).
[CrossRef]

Backus, S.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Baren, B.

R. Srinivasan, E. Sutcliffe, B. Baren, “Ablation and etching of polymethylmethaacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285–1287 (1987).
[CrossRef]

Baudach, S.

S. Baudach, J. Bonse, J. Krüger, W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[CrossRef]

Blanchet, G. B.

G. B. Blanchet, C. R. Fincher, “Laser induced unzipping: a thermal route to polymer ablation,” Appl. Phys. Lett. 65, 1311–1313 (1994).
[CrossRef]

Bonse, J.

S. Baudach, J. Bonse, J. Krüger, W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[CrossRef]

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22, 1562–1565 (1997).
[CrossRef]

Dyer, P. E.

J. E. Andrew, P. E. Dyer, D. Forster, P. H. Key, “Direct etching of polymeric materials using a XeCl laser,” Appl. Phys. Lett. 43, 717–719 (1983).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Ferencz, K.

Fiedler, A.

M. Lenner, A. Fiedler, Ch. Spielmann, “Reliability of laser safety eye wear in the femtosecond regime,” Opt. Express 12, 1329–1334 (2004).
[CrossRef] [PubMed]

S. Martin, J. Krüger, A. Hertwig, A. Fiedler, W. Kautek, “Femtosecond laser interaction with protection materials,” Appl. Surf. Sci. 208–209, 333–339 (2003).
[CrossRef]

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

Fincher, C. R.

G. B. Blanchet, C. R. Fincher, “Laser induced unzipping: a thermal route to polymer ablation,” Appl. Phys. Lett. 65, 1311–1313 (1994).
[CrossRef]

Forster, D.

J. E. Andrew, P. E. Dyer, D. Forster, P. H. Key, “Direct etching of polymeric materials using a XeCl laser,” Appl. Phys. Lett. 43, 717–719 (1983).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Hertwig, A.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, “Interaction area dependence of the ablation threshold of ion-doped glass,” Thin Solid Films 453–454, 527–530 (2004).
[CrossRef]

S. Martin, J. Krüger, A. Hertwig, A. Fiedler, W. Kautek, “Femtosecond laser interaction with protection materials,” Appl. Surf. Sci. 208–209, 333–339 (2003).
[CrossRef]

Kapteyn, H.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Katona, G.

M. Kolesik, G. Katona, J. V. Moloney, E. M. Wright, “Theory and simulation of supercontinuum generation in transparent bulk media,” Appl. Phys. B 77, 185–195 (2003).
[CrossRef]

Kautek, W.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, “Interaction area dependence of the ablation threshold of ion-doped glass,” Thin Solid Films 453–454, 527–530 (2004).
[CrossRef]

S. Martin, J. Krüger, A. Hertwig, A. Fiedler, W. Kautek, “Femtosecond laser interaction with protection materials,” Appl. Surf. Sci. 208–209, 333–339 (2003).
[CrossRef]

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Key, P. H.

J. E. Andrew, P. E. Dyer, D. Forster, P. H. Key, “Direct etching of polymeric materials using a XeCl laser,” Appl. Phys. Lett. 43, 717–719 (1983).
[CrossRef]

Kolesik, M.

M. Kolesik, G. Katona, J. V. Moloney, E. M. Wright, “Theory and simulation of supercontinuum generation in transparent bulk media,” Appl. Phys. B 77, 185–195 (2003).
[CrossRef]

Koschinski, W.

W. Koschinski, A. Schirmacher, E. Sutter, “Induced transmittance of eye-protective laser filters,” J. Laser Appl. 10, 126–130 (1998).
[CrossRef]

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22, 1562–1565 (1997).
[CrossRef]

Krüger, J.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, “Interaction area dependence of the ablation threshold of ion-doped glass,” Thin Solid Films 453–454, 527–530 (2004).
[CrossRef]

S. Martin, J. Krüger, A. Hertwig, A. Fiedler, W. Kautek, “Femtosecond laser interaction with protection materials,” Appl. Surf. Sci. 208–209, 333–339 (2003).
[CrossRef]

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Lenner, M.

M. Lenner, Ch. Spielmann, “Reliability of polycarbonate filters in the femtosecond regime,” Appl. Phys. B 78, 689–692 (2004).
[CrossRef]

M. Lenner, A. Fiedler, Ch. Spielmann, “Reliability of laser safety eye wear in the femtosecond regime,” Opt. Express 12, 1329–1334 (2004).
[CrossRef] [PubMed]

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

Lenzner, M.

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22, 1562–1565 (1997).
[CrossRef]

Martin, S.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, “Interaction area dependence of the ablation threshold of ion-doped glass,” Thin Solid Films 453–454, 527–530 (2004).
[CrossRef]

S. Martin, J. Krüger, A. Hertwig, A. Fiedler, W. Kautek, “Femtosecond laser interaction with protection materials,” Appl. Surf. Sci. 208–209, 333–339 (2003).
[CrossRef]

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

Moloney, J. V.

M. Kolesik, G. Katona, J. V. Moloney, E. M. Wright, “Theory and simulation of supercontinuum generation in transparent bulk media,” Appl. Phys. B 77, 185–195 (2003).
[CrossRef]

Mourou, G.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Murnane, M.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22, 1562–1565 (1997).
[CrossRef]

Schirmacher, A.

A. Schirmacher, E. Sutter, “Induced transmittance in alexandrite laser eye-protectors—a survey of different types of laser filters,” Opt. Laser Technol. 33, 359–362 (2001).
[CrossRef]

W. Koschinski, A. Schirmacher, E. Sutter, “Induced transmittance of eye-protective laser filters,” J. Laser Appl. 10, 126–130 (1998).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Spielmann, C.

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

Spielmann, Ch.

M. Lenner, Ch. Spielmann, “Reliability of polycarbonate filters in the femtosecond regime,” Appl. Phys. B 78, 689–692 (2004).
[CrossRef]

M. Lenner, A. Fiedler, Ch. Spielmann, “Reliability of laser safety eye wear in the femtosecond regime,” Opt. Express 12, 1329–1334 (2004).
[CrossRef] [PubMed]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22, 1562–1565 (1997).
[CrossRef]

Srinivasan, R.

R. Srinivasan, E. Sutcliffe, B. Baren, “Ablation and etching of polymethylmethaacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285–1287 (1987).
[CrossRef]

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Sutcliffe, E.

R. Srinivasan, E. Sutcliffe, B. Baren, “Ablation and etching of polymethylmethaacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285–1287 (1987).
[CrossRef]

Sutter, E.

A. Schirmacher, E. Sutter, “Induced transmittance in alexandrite laser eye-protectors—a survey of different types of laser filters,” Opt. Laser Technol. 33, 359–362 (2001).
[CrossRef]

W. Koschinski, A. Schirmacher, E. Sutter, “Induced transmittance of eye-protective laser filters,” J. Laser Appl. 10, 126–130 (1998).
[CrossRef]

Tempea, G.

Tien, A. C.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Wright, E. M.

M. Kolesik, G. Katona, J. V. Moloney, E. M. Wright, “Theory and simulation of supercontinuum generation in transparent bulk media,” Appl. Phys. B 77, 185–195 (2003).
[CrossRef]

Appl. Phys. B (2)

M. Lenner, Ch. Spielmann, “Reliability of polycarbonate filters in the femtosecond regime,” Appl. Phys. B 78, 689–692 (2004).
[CrossRef]

M. Kolesik, G. Katona, J. V. Moloney, E. M. Wright, “Theory and simulation of supercontinuum generation in transparent bulk media,” Appl. Phys. B 77, 185–195 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

R. Srinivasan, E. Sutcliffe, B. Baren, “Ablation and etching of polymethylmethaacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285–1287 (1987).
[CrossRef]

J. E. Andrew, P. E. Dyer, D. Forster, P. H. Key, “Direct etching of polymeric materials using a XeCl laser,” Appl. Phys. Lett. 43, 717–719 (1983).
[CrossRef]

G. B. Blanchet, C. R. Fincher, “Laser induced unzipping: a thermal route to polymer ablation,” Appl. Phys. Lett. 65, 1311–1313 (1994).
[CrossRef]

Appl. Surf. Sci. (3)

S. Baudach, J. Bonse, J. Krüger, W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[CrossRef]

S. Martin, J. Krüger, A. Hertwig, A. Fiedler, W. Kautek, “Femtosecond laser interaction with protection materials,” Appl. Surf. Sci. 208–209, 333–339 (2003).
[CrossRef]

J. Krüger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, W. Kautek, “Single- and multi-pulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci. 208–209, 233–237 (2003).
[CrossRef]

Health Phys. (1)

International Commission on Non-Ionizing Radiation Protection, “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 µm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

J. Laser Appl. (1)

W. Koschinski, A. Schirmacher, E. Sutter, “Induced transmittance of eye-protective laser filters,” J. Laser Appl. 10, 126–130 (1998).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

A. Schirmacher, E. Sutter, “Induced transmittance in alexandrite laser eye-protectors—a survey of different types of laser filters,” Opt. Laser Technol. 33, 359–362 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Science (1)

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

Thin Solid Films (1)

A. Hertwig, S. Martin, J. Krüger, W. Kautek, “Interaction area dependence of the ablation threshold of ion-doped glass,” Thin Solid Films 453–454, 527–530 (2004).
[CrossRef]

Other (2)

We are preparing a manuscript to be called “Time-resolved saturation dynamics of doped polycarbonate.”

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), pp. 75–102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transmission of a 0.5-mm thin ion-doped glass filter sample as a function of the incident fluence for a different number of shots, τp = 25 fs. No protection degradation of the filter can be observed for multiple-pulse energy deposition.

Fig. 2
Fig. 2

Transmission of a 0.5-mm thin ion-doped glass filter sample as a function of the incident fluence for a different number of shots, τp = 1.2 ps. Slight saturation of the filter can be observed in the single-shot case, which can be compensated with extended physical thickness.

Fig. 3
Fig. 3

Transmission of two polycarbonate host filter samples as a function of the incident fluence for single-shot excitation, τp = 25 fs. The onset of damage is denoted by the kink of the transmission.

Fig. 4
Fig. 4

Transmission of two polycarbonate host filter samples as a function of the incident fluence for single-shot excitation, τp = 1.2 ps. Substantial pulse duration dependence of the saturation can be observed.

Fig. 5
Fig. 5

Damage thresholds of the GPC filter as a function of the number of shots. For higher shot numbers the damage threshold becomes independent of the pulse duration, which provides evidence for the thermal nature of the damage.

Fig. 6
Fig. 6

Single-shot spectral transmission of the glass host filter for τp = 25-fs pulses. Bright regions represent higher transmitted intensities. The spectral broadening in the high-fluence range is well observable.

Fig. 7
Fig. 7

Operation chart of the glass filter. BW, bandwidth limit (see text); Fsat, saturation fluence; Fdam, single-shot damage fluence. I, safe operation range that has an absence of any nonlinear effects such as saturation. II, damage range that has an onset of single-shot surface damage; the filter keeps its protecting properties. III, saturation regime where the single-shot damage threshold exceeds the saturation limit. IV, danger range where the transmitted energy exceeds the eye-safe limit.

Fig. 8
Fig. 8

Operation chart of the GPC filter. BW, bandwidth limit (see text); Fsat, saturation fluence; Fdam, damage fluence. Upper short-dashed line, single-shot damage threshold; bottom short-dashed line, 10,000-shot damage threshold. I, safe operation range. II, damage range that has an onset of multishot extended-volume damage. IV, danger range where the transmitted energy exceeds the eye-safe limit. Above saturation fluence the transmission increases until reaching the damage threshold.

Fig. 9
Fig. 9

Operation chart of the PPC filter. BW, bandwidth limit (see text); MSL, measured safety limit; Fsat, saturation fluence; Fdam, single-shot damage fluence. I, safe operation range. III, saturation regime where saturation occurs; however, due to the high nominal optical density of the filter (OD of 5), the regime can be considered (with restrictions) as eye safe. IV, danger range where the transmitted energy exceeds the eye-safe limit. Above saturation fluence the transmission increases until reaching the damage threshold.

Metrics