Abstract

For the purpose of calibrating multiwavelength lidar data, we developed a scatterometer to measure the aerosol scattering coefficient at the ground level. The system is based on an integrating sphere, cw lasers (532 and 633 nm), and a controlled flow of the ambient air, including aerosol particles. The simulation study and experimental results indicate that the detection efficiency of this instrument is approximately 10%–40% better than that of an integrating nephelometer, because of the wider acceptance angle of the scattered light. The scattering coefficients measured at the two wavelengths, as well as the resulting value of the angstrom exponent, show good correlation with the results simultaneously measured with an integrating nephelometer and an optical particle counter.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kinjo, H. Kuze, Y. Sakurada, N. Takeuchi, “Calibration of the lidar measurement of tropospheric aerosol extinction coefficients,” Jpn. J. Appl. Phys. 38, 293–297 (1999).
    [CrossRef]
  2. P. Piironen, E. W. Eloranta, “Determination of a high-spectral-resolution-lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef]
  3. A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
    [CrossRef]
  4. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  5. S. J. Doherty, T. L. Anderson, R. J. Charlson, “Measurement of the lidar ratio for atmospheric aerosols with a 180° backscattering nephelometer,” Appl. Opt. 38, 1823–1832 (1999).
    [CrossRef]
  6. V. A. Kovalev, “Stable near-end solution of the lidar equation for clear atmosphere,” Appl. Opt. 42, 585–591 (2003).
    [CrossRef] [PubMed]
  7. S. Fukagawa, H. Kuze, N. Lagrosas, N. Takeuchi, “Development of an aerosol scatterometer using an integrating sphere for lidar data calibration,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds.(European Space Agency, Noordwijk, The Netherlands, 2004), pp. 283–286.
  8. Labsphere Inc., “Technical information—a guide to integrating sphere theory and applications,” (Labsphere, Inc., North Sutton, N.H., 14April2005), http://www.labsphere.com/ .
  9. A. Petzold, M. Schönlinner, “Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon,” Aerosol Sci. 35, 421–441 (2004).
    [CrossRef]
  10. G. Myhre, F. Stordal, K. Restad, I. S. A. Isaksen, “Estimation of the direct radiative forcing due to sulfate and soot aerosols,” Tellus 50B, 463–477 (1998).
    [CrossRef]
  11. M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003).
    [CrossRef]
  12. P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
    [CrossRef]
  13. J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Nephelometer optical response model for the interpretation of atmospheric aerosol measurements,” Appl. Opt. 36, 2642–2649 (1997).
    [CrossRef] [PubMed]
  14. T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
    [CrossRef]
  15. C. E. Junge, “The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere,” J. Meteorol. 12, 13–15 (1955).
    [CrossRef]
  16. R. Penndorf, “Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics,” J. Opt. Soc. Am. 47, 176–182 (1957).
    [CrossRef]
  17. B. Edlen, “Dispersion of standard air,” J. Opt. Soc. Am. 43, 339–344 (1953).
    [CrossRef]
  18. E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles, 1st ed. (Wiley, New York, 1976).

2004 (1)

A. Petzold, M. Schönlinner, “Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon,” Aerosol Sci. 35, 421–441 (2004).
[CrossRef]

2003 (2)

V. A. Kovalev, “Stable near-end solution of the lidar equation for clear atmosphere,” Appl. Opt. 42, 585–591 (2003).
[CrossRef] [PubMed]

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003).
[CrossRef]

2000 (1)

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

1999 (2)

S. J. Doherty, T. L. Anderson, R. J. Charlson, “Measurement of the lidar ratio for atmospheric aerosols with a 180° backscattering nephelometer,” Appl. Opt. 38, 1823–1832 (1999).
[CrossRef]

H. Kinjo, H. Kuze, Y. Sakurada, N. Takeuchi, “Calibration of the lidar measurement of tropospheric aerosol extinction coefficients,” Jpn. J. Appl. Phys. 38, 293–297 (1999).
[CrossRef]

1998 (1)

G. Myhre, F. Stordal, K. Restad, I. S. A. Isaksen, “Estimation of the direct radiative forcing due to sulfate and soot aerosols,” Tellus 50B, 463–477 (1998).
[CrossRef]

1997 (1)

1996 (1)

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

1994 (1)

1992 (1)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

1984 (1)

1957 (1)

1955 (1)

C. E. Junge, “The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere,” J. Meteorol. 12, 13–15 (1955).
[CrossRef]

1953 (1)

Ahlquist, N. A.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Anderson, T. L.

S. J. Doherty, T. L. Anderson, R. J. Charlson, “Measurement of the lidar ratio for atmospheric aerosols with a 180° backscattering nephelometer,” Appl. Opt. 38, 1823–1832 (1999).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Ansmann, A.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

Bates, T. S.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Caldow, R.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Charlson, R. J.

S. J. Doherty, T. L. Anderson, R. J. Charlson, “Measurement of the lidar ratio for atmospheric aerosols with a 180° backscattering nephelometer,” Appl. Opt. 38, 1823–1832 (1999).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Coffman, D. J.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

Covert, D. S.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Despiau, S.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003).
[CrossRef]

Doherty, S. J.

Dubovik, O.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003).
[CrossRef]

Edlen, B.

Eloranta, E. W.

Fernald, F. G.

Fukagawa, S.

S. Fukagawa, H. Kuze, N. Lagrosas, N. Takeuchi, “Development of an aerosol scatterometer using an integrating sphere for lidar data calibration,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds.(European Space Agency, Noordwijk, The Netherlands, 2004), pp. 283–286.

Garvey, D. M.

Holm, R. L.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Isaksen, I. S. A.

G. Myhre, F. Stordal, K. Restad, I. S. A. Isaksen, “Estimation of the direct radiative forcing due to sulfate and soot aerosols,” Tellus 50B, 463–477 (1998).
[CrossRef]

Johnson, J. E.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

Junge, C. E.

C. E. Junge, “The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere,” J. Meteorol. 12, 13–15 (1955).
[CrossRef]

Kinjo, H.

H. Kinjo, H. Kuze, Y. Sakurada, N. Takeuchi, “Calibration of the lidar measurement of tropospheric aerosol extinction coefficients,” Jpn. J. Appl. Phys. 38, 293–297 (1999).
[CrossRef]

Kovalev, V. A.

Kuze, H.

H. Kinjo, H. Kuze, Y. Sakurada, N. Takeuchi, “Calibration of the lidar measurement of tropospheric aerosol extinction coefficients,” Jpn. J. Appl. Phys. 38, 293–297 (1999).
[CrossRef]

S. Fukagawa, H. Kuze, N. Lagrosas, N. Takeuchi, “Development of an aerosol scatterometer using an integrating sphere for lidar data calibration,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds.(European Space Agency, Noordwijk, The Netherlands, 2004), pp. 283–286.

Lagrosas, N.

S. Fukagawa, H. Kuze, N. Lagrosas, N. Takeuchi, “Development of an aerosol scatterometer using an integrating sphere for lidar data calibration,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds.(European Space Agency, Noordwijk, The Netherlands, 2004), pp. 283–286.

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

Laucks, M. L.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Mallet, M.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003).
[CrossRef]

Marshall, S. F.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles, 1st ed. (Wiley, New York, 1976).

Michaelis, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

Miller, T. L.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

Myhre, G.

G. Myhre, F. Stordal, K. Restad, I. S. A. Isaksen, “Estimation of the direct radiative forcing due to sulfate and soot aerosols,” Tellus 50B, 463–477 (1998).
[CrossRef]

Neusus, C.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

Novakov, T.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

Ogren, R. A.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Penndorf, R.

Petzold, A.

A. Petzold, M. Schönlinner, “Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon,” Aerosol Sci. 35, 421–441 (2004).
[CrossRef]

Piironen, P.

Pinnick, R. G.

Putaud, J. P.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

Quant, F. R.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Quinn, P. K.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

Restad, K.

G. Myhre, F. Stordal, K. Restad, I. S. A. Isaksen, “Estimation of the direct radiative forcing due to sulfate and soot aerosols,” Tellus 50B, 463–477 (1998).
[CrossRef]

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

Roger, J. C.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003).
[CrossRef]

Rosen, J. M.

Sakurada, Y.

H. Kinjo, H. Kuze, Y. Sakurada, N. Takeuchi, “Calibration of the lidar measurement of tropospheric aerosol extinction coefficients,” Jpn. J. Appl. Phys. 38, 293–297 (1999).
[CrossRef]

Schönlinner, M.

A. Petzold, M. Schönlinner, “Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon,” Aerosol Sci. 35, 421–441 (2004).
[CrossRef]

Sem, G. J.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Stordal, F.

G. Myhre, F. Stordal, K. Restad, I. S. A. Isaksen, “Estimation of the direct radiative forcing due to sulfate and soot aerosols,” Tellus 50B, 463–477 (1998).
[CrossRef]

Takeuchi, N.

H. Kinjo, H. Kuze, Y. Sakurada, N. Takeuchi, “Calibration of the lidar measurement of tropospheric aerosol extinction coefficients,” Jpn. J. Appl. Phys. 38, 293–297 (1999).
[CrossRef]

S. Fukagawa, H. Kuze, N. Lagrosas, N. Takeuchi, “Development of an aerosol scatterometer using an integrating sphere for lidar data calibration,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds.(European Space Agency, Noordwijk, The Netherlands, 2004), pp. 283–286.

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

Wandinger, U.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

Weit-kamp, C.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

Wiedensohler, A.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

Aerosol Sci. (1)

A. Petzold, M. Schönlinner, “Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon,” Aerosol Sci. 35, 421–441 (2004).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (1)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992).
[CrossRef]

Atmos. Res. (1)

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996).
[CrossRef]

J. Meteorol. (1)

C. E. Junge, “The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere,” J. Meteorol. 12, 13–15 (1955).
[CrossRef]

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (1)

H. Kinjo, H. Kuze, Y. Sakurada, N. Takeuchi, “Calibration of the lidar measurement of tropospheric aerosol extinction coefficients,” Jpn. J. Appl. Phys. 38, 293–297 (1999).
[CrossRef]

Opt. Lett. (1)

Tellus (2)

G. Myhre, F. Stordal, K. Restad, I. S. A. Isaksen, “Estimation of the direct radiative forcing due to sulfate and soot aerosols,” Tellus 50B, 463–477 (1998).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000).
[CrossRef]

Other (3)

E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles, 1st ed. (Wiley, New York, 1976).

S. Fukagawa, H. Kuze, N. Lagrosas, N. Takeuchi, “Development of an aerosol scatterometer using an integrating sphere for lidar data calibration,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds.(European Space Agency, Noordwijk, The Netherlands, 2004), pp. 283–286.

Labsphere Inc., “Technical information—a guide to integrating sphere theory and applications,” (Labsphere, Inc., North Sutton, N.H., 14April2005), http://www.labsphere.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the setup: PD, photodiode; C1, C2, air compressors; PF, particle filter; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Timing chart of the time-sharing measurement (top) and an example of the measured signal (bottom).

Fig. 3
Fig. 3

Observed Mie-scattering path. A bright filament (11.4 mm long) indicates that the aerosol flow (from top to bottom) and the laser beam (from left to right) intersect each other in this region. The images of port tubes are overlaid in a geometrically correct way above and below the interaction region. The clean air also flows from both sides along the laser path toward the center and is pumped out from the bottom tube, thus eliminating the spreading of aerosol particles apart from the vertical flow.

Fig. 4
Fig. 4

Results of the system calibration measurement. The signal intensities for each molecular species are plotted against the theoretical values of the molecular scattering coefficient. For each laser wavelength, a value is determined for the slope constant km defined in Eq. (5).

Fig. 5
Fig. 5

Example of the variation of the aerosol parameters (10 May–12 May 2004). (a) Scattering coefficients measured with the IS (532-and 633-nm) and the IN (530-nm) instruments. The absorption coefficient measured with the SP (570 nm) is also plotted. (b) Angstrom exponent derived from the IS and the OPC data.

Fig. 6
Fig. 6

Correlation plot between the angstrom exponent αang and the efficiency ratio R (the ratio between the scattering coefficients derived from the IS and the IN). The gray circles show the result of the Monte Carlo simulation and the crosses that of the actual data measured during 26 March–5 April 2004.

Fig. 7
Fig. 7

Detection efficiency η for the IS system and IN as a function of the angstrom exponent αang.

Tables (2)

Tables Icon

Table 1 Specifications of the IS Instrument

Tables Icon

Table 2 Scattering Cross Sections for the Molecular Species Employed in the System Calibration (10−30m2)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S = S a + S m + S b .
S a = C 0 Φ a ,
Φ a = P 0 l a α a ,
α a = 1 C 0 P 0 l a ( S S m S b ) .
S S b = k m α m ,
k m = C 0 P 0 l m .
α a = l m k m l a ( S S m S b ) .

Metrics