Abstract

Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane Development, W. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
    [CrossRef]
  2. J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds., Proc. SPIE2474, 23–33 (1995).
    [CrossRef]
  3. J. G. Harris, Y.-M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Anderson, M. Strojnik, eds., Proc. SPIE3061, 895–905 (1997).
    [CrossRef]
  4. Y.-M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
    [CrossRef]
  5. W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).
  6. R. Hardie, M. Hayat, E. Armstrong, B. Yasuda, “Scene-based nonuniformity correction with video sequences and registration,” Appl. Opt. 39, 1241–1250 (2000).
    [CrossRef]
  7. B. R. Ratliff, M. M. Hayat, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).
  8. M. M. Hayat, S. N. Torres, E. Armstrong, S. C. Cain, B. Yasuda, “Statistical algorithm for nonuniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
    [CrossRef]
  9. S. N. Torres, E. B. Vera, S. K. S. R. A. Reeves, “Adaptive scene-based non-uniformity correction method for infrared-focal plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE5076, 130–139 (2003).
  10. R. A. Muse, R. C. Hardie, “A new non-uniformity correction technique based on readout architecture in focal plane arrays,” presented at The 6th World Multiconference on Systemics, Cybernetics and Informatics, Invited Session on Image Processing for Infrared Array Sensors: Nonuniformity Correction and Registration, Orlando, Fla., 14–18 July 2002.
  11. R. C. Hardie, M. M. Hayat, “A nonlinear-filter based approach to detector nonuniformity correction,” in Proceedings of the 2001 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, K. Barner, G. Arce, eds., (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 2001).

2000

1999

1997

Y.-M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
[CrossRef]

Armstrong, E.

Cain, S. C.

Chiang, Y.-M.

Y.-M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
[CrossRef]

J. G. Harris, Y.-M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Anderson, M. Strojnik, eds., Proc. SPIE3061, 895–905 (1997).
[CrossRef]

Foss, N. A.

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane Development, W. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

Hardie, R.

Hardie, R. C.

R. A. Muse, R. C. Hardie, “A new non-uniformity correction technique based on readout architecture in focal plane arrays,” presented at The 6th World Multiconference on Systemics, Cybernetics and Informatics, Invited Session on Image Processing for Infrared Array Sensors: Nonuniformity Correction and Registration, Orlando, Fla., 14–18 July 2002.

R. C. Hardie, M. M. Hayat, “A nonlinear-filter based approach to detector nonuniformity correction,” in Proceedings of the 2001 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, K. Barner, G. Arce, eds., (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 2001).

Harris, J. G.

Y.-M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
[CrossRef]

J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds., Proc. SPIE2474, 23–33 (1995).
[CrossRef]

J. G. Harris, Y.-M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Anderson, M. Strojnik, eds., Proc. SPIE3061, 895–905 (1997).
[CrossRef]

Hayat, M.

Hayat, M. M.

M. M. Hayat, S. N. Torres, E. Armstrong, S. C. Cain, B. Yasuda, “Statistical algorithm for nonuniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

B. R. Ratliff, M. M. Hayat, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).

R. C. Hardie, M. M. Hayat, “A nonlinear-filter based approach to detector nonuniformity correction,” in Proceedings of the 2001 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, K. Barner, G. Arce, eds., (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 2001).

Muse, R. A.

R. A. Muse, R. C. Hardie, “A new non-uniformity correction technique based on readout architecture in focal plane arrays,” presented at The 6th World Multiconference on Systemics, Cybernetics and Informatics, Invited Session on Image Processing for Infrared Array Sensors: Nonuniformity Correction and Registration, Orlando, Fla., 14–18 July 2002.

Narendra, P. M.

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane Development, W. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

O’Neil, W. F.

W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).

Ratliff, B. R.

B. R. Ratliff, M. M. Hayat, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).

Reeves, S. K. S. R. A.

S. N. Torres, E. B. Vera, S. K. S. R. A. Reeves, “Adaptive scene-based non-uniformity correction method for infrared-focal plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE5076, 130–139 (2003).

Torres, S. N.

M. M. Hayat, S. N. Torres, E. Armstrong, S. C. Cain, B. Yasuda, “Statistical algorithm for nonuniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

S. N. Torres, E. B. Vera, S. K. S. R. A. Reeves, “Adaptive scene-based non-uniformity correction method for infrared-focal plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE5076, 130–139 (2003).

Vera, E. B.

S. N. Torres, E. B. Vera, S. K. S. R. A. Reeves, “Adaptive scene-based non-uniformity correction method for infrared-focal plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE5076, 130–139 (2003).

Yasuda, B.

Analog Integr. Circuits Signal Process.

Y.-M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
[CrossRef]

Appl. Opt.

Other

B. R. Ratliff, M. M. Hayat, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).

S. N. Torres, E. B. Vera, S. K. S. R. A. Reeves, “Adaptive scene-based non-uniformity correction method for infrared-focal plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, G. C. Holst, ed., Proc. SPIE5076, 130–139 (2003).

R. A. Muse, R. C. Hardie, “A new non-uniformity correction technique based on readout architecture in focal plane arrays,” presented at The 6th World Multiconference on Systemics, Cybernetics and Informatics, Invited Session on Image Processing for Infrared Array Sensors: Nonuniformity Correction and Registration, Orlando, Fla., 14–18 July 2002.

R. C. Hardie, M. M. Hayat, “A nonlinear-filter based approach to detector nonuniformity correction,” in Proceedings of the 2001 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, K. Barner, G. Arce, eds., (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 2001).

W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane Development, W. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds., Proc. SPIE2474, 23–33 (1995).
[CrossRef]

J. G. Harris, Y.-M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Anderson, M. Strojnik, eds., Proc. SPIE3061, 895–905 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Channel level readout pattern for (a) Night Conqueror II infrared camera and (b) Amber infrared camera [channel 1 (M1), ao-44-17-3482-i001; channel 2 (M2), ao-44-17-3482-i002; channel 3 (M3), ao-44-17-3482-i003; channel 4 (M4), ■ ].

Fig. 2
Fig. 2

True visible 8-bit image.

Fig. 3
Fig. 3

Frame 100 in the simulated image sequence: (a) uncorrupted true frame, (b) corrupted with simulated channel and detector nonuniformity, (c) corrected for readout nonuniformity, (d) preliminary scene estimate with the 5 × 5 median filter, (e) corrected with the RLS algorithm with 100 frames, (f) corrected with the RLS algorithm without application of the readout correction.

Fig. 4
Fig. 4

Error metrics used to evaluate the performance of the proposed algorithm as a function of median filter size: (a) MAE, (b) SNR.

Fig. 5
Fig. 5

Frame 100 in the real infrared image sequence acquired with the Amber infrared imager: (a) raw frame, (b) corrected for readout nonuniformity, (c) preliminary scene estimate with a 3 × 3 median filter, (d) corrected with the RLS algorithm with 100 frames, (e) corrected with the RLS algorithm without application of the readout correction.

Fig. 6
Fig. 6

Frame 100 in the real infrared image sequence acquired with the Night Conqueror infrared imager: (a) raw frame, (b) corrected for readout nonuniformity, (c) preliminary scene estimate with the 13 × 13 median filter, (d) corrected with the RLS algorithm with 100 frames.

Tables (2)

Tables Icon

Table 1 Recursive Least-Squares Nonuniformity Parameter Estimation Performed for Each Pixel j

Tables Icon

Table 2 Mean and Standard Deviation for the Gain and the Bias for Each of the Four Channels Used to Simulate Channel Nonuniformity

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

y k ( j ) = a k , 1 ( j ) x k N ( j ) + a k , 2 ( j ) x k N 1 ( j ) + + a k , N + 1 ( j ) = a k ( j ) T x k ( j ) ,
a k ( j ) = [ a k , 1 ( j ) , a k , 2 ( j ) , , a k , N + 1 ( j ) ] T
x k ( j ) = [ x k N ( j ) , x k N 1 ( j ) , , x k ( j ) , 1 ] .
M 1 M 2 M L = { 1 , 2 , , P } ,
M i M j =
P = i = 1 L P i .
z k ( j ) = b k , i y k ( j ) + c k , i
µ k , i = 1 R P i n = max ( 1 , r ) k j M i z n ( j ) ,
σ k , i = 1 R P i n = max ( 1 , r ) k j M i [ z n ( j ) µ k , i ] 2 ,
µ ¯ k , i = 1 Q i n W i µ k , n ,
σ ¯ k , i = 1 Q i n W i σ k , n ,
ŷ k ( j ) = [ z k ( j ) µ k , i σ k , i ] σ ¯ k , i + µ ¯ k , i
b ̂ k , i = σ k , i σ ¯ k , i ,
ĉ k , i = µ k , i σ k , i σ ¯ k , i µ ¯ k , i ,
µ ̂ k , i = k 1 k µ ̂ k 1 , i + 1 k P i j M i z k ( j ) .
σ ̂ k , i 2 = k 1 k σ ̂ k 1 , i 2 + 1 k P i j M i [ z k ( j ) µ ̂ k , i ] 2 .
x ¯ k ( j ) = [ x ¯ k N ( j ) x ¯ k N 1 ( j ) , , x ¯ k ( j ) , 1 ] T .
ε n ( j ) = i = 0 n λ n i | ŷ i ( j ) a n ( j ) T x ¯ ( j ) | 2 .
â n ( j ) = arg min a n ( j ) i = 0 n λ n i | ŷ i ( j ) a T x ¯ i ( j ) | 2 ,
â n ( j ) = [ â n , 1 ( j ) , â n , 2 ( j ) , , â n , N + 1 ( j ) ] T
x ̂ n ( j ) = ŷ n ( j ) â n , 2 ( j ) â n , 1 ( j ) .
â n , 1 ( j ) x N + â n , 2 ( j ) x N 1 + + â N + 1 ( j ) = ŷ n ( j ) .
h n ( j ) = P n 1 ( j ) x ¯ n ( j ) ,
g n ( j ) = 1 λ + x ¯ n T ( j ) h n ( j ) h n ( j ) ,
P n ( j ) = 1 λ [ P n 1 ( j ) g n ( j ) h n T ( j ) ] ,
α n ( j ) = ŷ n ( j ) α n T ( j ) x ¯ n ( j ) ,
â n ( j ) = â n 1 ( j ) + α n ( j ) g n ( j ) .

Metrics