Abstract

We present a simple experimental setup of magneto-optical tweezers built around an inverted microscope. Two pairs of coils placed around the focal point of the objective generate a planar-rotating magnetic field that is perpendicular to the stretching direction. This configuration allows us to control the rotary movement of a paramagnetic bead trapped in the optical tweezers. The mechanical design is universal and can be simply adapted to any inverted microscope and objective. The mechanical configuration permits the use of a rather large experimental cell and the simple assembly and disassembly of the magnetic attachment.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
    [CrossRef] [PubMed]
  3. S. M. Block, L. S. Goldstein, B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348–352 (1990).
    [CrossRef] [PubMed]
  4. K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” Biophys. J. 63, 784–793 (1992).
  5. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
    [CrossRef] [PubMed]
  6. M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
  7. M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276, 1109–1112 (1997).
    [CrossRef] [PubMed]
  8. Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, “Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation,” Proc. Natl. Acad. Sci. USA 93, 12937–12942 (1996).
    [CrossRef]
  9. I. Tinoco, C. Bustamante, “How RNA folds,” J. Mol. Biol. 293, 271–281 (1999).
    [CrossRef] [PubMed]
  10. Y. Cui, C. Bustamante, “Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure,” Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).
  11. M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
    [CrossRef] [PubMed]
  12. B. D. Brower-Toland, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, “Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA,” Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).
  13. Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
    [CrossRef] [PubMed]
  14. J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
    [CrossRef]
  15. C. Gosse, V. Croquette, “Magnetic tweezers: micromanipulation and force measurement at the molecular level,” Biophys. J. 82, 3314–3329 (2002).
  16. L. Sacconi, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. Dunlap, L. Finzi, F.S. Pavone, “Three-dimensional magneto-optic trap for micro-object manipulation,” Opt. Lett. 26, 1359–1361 (2001).
    [CrossRef]
  17. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
    [CrossRef] [PubMed]
  18. G. J. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).

2003 (1)

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
[CrossRef] [PubMed]

2002 (2)

B. D. Brower-Toland, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, “Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA,” Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

C. Gosse, V. Croquette, “Magnetic tweezers: micromanipulation and force measurement at the molecular level,” Biophys. J. 82, 3314–3329 (2002).

2001 (3)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[CrossRef] [PubMed]

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[CrossRef] [PubMed]

L. Sacconi, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. Dunlap, L. Finzi, F.S. Pavone, “Three-dimensional magneto-optic trap for micro-object manipulation,” Opt. Lett. 26, 1359–1361 (2001).
[CrossRef]

2000 (2)

G. J. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).

Y. Cui, C. Bustamante, “Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure,” Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

1999 (2)

I. Tinoco, C. Bustamante, “How RNA folds,” J. Mol. Biol. 293, 271–281 (1999).
[CrossRef] [PubMed]

J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
[CrossRef]

1997 (2)

M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276, 1109–1112 (1997).
[CrossRef] [PubMed]

1996 (2)

Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, “Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation,” Proc. Natl. Acad. Sci. USA 93, 12937–12942 (1996).
[CrossRef]

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

1992 (1)

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” Biophys. J. 63, 784–793 (1992).

1990 (1)

S. M. Block, L. S. Goldstein, B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348–352 (1990).
[CrossRef] [PubMed]

1987 (1)

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

1986 (1)

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Ballerini, R.

Bennink, M. L.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” Biophys. J. 63, 784–793 (1992).

S. M. Block, L. S. Goldstein, B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348–352 (1990).
[CrossRef] [PubMed]

Bourdieu, L.

J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
[CrossRef]

Branton, D.

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” Biophys. J. 63, 784–793 (1992).

Brower-Toland, B. D.

B. D. Brower-Toland, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, “Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA,” Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[CrossRef] [PubMed]

Bryant, Z.

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
[CrossRef] [PubMed]

Bustamante, C.

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
[CrossRef] [PubMed]

Y. Cui, C. Bustamante, “Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure,” Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

G. J. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).

I. Tinoco, C. Bustamante, “How RNA folds,” J. Mol. Biol. 293, 271–281 (1999).
[CrossRef] [PubMed]

Capitanio, M.

Caron, F.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

Chatenay, D.

J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
[CrossRef]

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

Chu, S.

Cluzel, P.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

Cozzarelli, N. R.

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
[CrossRef] [PubMed]

Croquette, V.

C. Gosse, V. Croquette, “Magnetic tweezers: micromanipulation and force measurement at the molecular level,” Biophys. J. 82, 3314–3329 (2002).

Cui, Y.

Y. Cui, C. Bustamante, “Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure,” Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

Davenport, R. J.

G. J. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).

de Grooth, B. G.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[CrossRef] [PubMed]

De Pas, M.

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[CrossRef] [PubMed]

Dunlap, D.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Fernandez, J. M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276, 1109–1112 (1997).
[CrossRef] [PubMed]

Finzi, L.

Gaub, H. E.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276, 1109–1112 (1997).
[CrossRef] [PubMed]

Gautel, M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276, 1109–1112 (1997).
[CrossRef] [PubMed]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).

Giuntini, M.

Goldstein, L. S.

S. M. Block, L. S. Goldstein, B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348–352 (1990).
[CrossRef] [PubMed]

Gore, J.

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
[CrossRef] [PubMed]

Gosse, C.

C. Gosse, V. Croquette, “Magnetic tweezers: micromanipulation and force measurement at the molecular level,” Biophys. J. 82, 3314–3329 (2002).

Greve, J.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[CrossRef] [PubMed]

Heller, C.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

Ishijima, A.

Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, “Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation,” Proc. Natl. Acad. Sci. USA 93, 12937–12942 (1996).
[CrossRef]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).

Lavery, R.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

Lebrun, A.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

Léger, J. F.

J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
[CrossRef]

Leno, G. H.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[CrossRef] [PubMed]

Leuba, S. H.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[CrossRef] [PubMed]

Lis, J. T.

B. D. Brower-Toland, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, “Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA,” Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[CrossRef] [PubMed]

Marko, J. F.

J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
[CrossRef]

Oesterhelt, F.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276, 1109–1112 (1997).
[CrossRef] [PubMed]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[CrossRef] [PubMed]

Pavone, F.S.

Peterson, C. L.

B. D. Brower-Toland, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, “Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA,” Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

Rappaport, A.

G. J. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).

Rief, M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276, 1109–1112 (1997).
[CrossRef] [PubMed]

Robert, J.

J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
[CrossRef]

Sacconi, L.

Sarkar, A.

J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
[CrossRef]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” Biophys. J. 63, 784–793 (1992).

Schnapp, B. J.

S. M. Block, L. S. Goldstein, B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348–352 (1990).
[CrossRef] [PubMed]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[CrossRef] [PubMed]

Smith, S. B.

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
[CrossRef] [PubMed]

Stone, M. D.

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” Biophys. J. 63, 784–793 (1992).

Tinoco, I.

I. Tinoco, C. Bustamante, “How RNA folds,” J. Mol. Biol. 293, 271–281 (1999).
[CrossRef] [PubMed]

Tsuda, Y.

Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, “Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation,” Proc. Natl. Acad. Sci. USA 93, 12937–12942 (1996).
[CrossRef]

Viovy, J. L.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

Wang, M. D.

B. D. Brower-Toland, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, “Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA,” Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).

Wuite, G. J.

G. J. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).

Yamane, T.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Yanagida, T.

Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, “Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation,” Proc. Natl. Acad. Sci. USA 93, 12937–12942 (1996).
[CrossRef]

Yasutake, H.

Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, “Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation,” Proc. Natl. Acad. Sci. USA 93, 12937–12942 (1996).
[CrossRef]

Yeh, R. C.

B. D. Brower-Toland, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, “Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA,” Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).

Zlatanova, J.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[CrossRef] [PubMed]

Biophys. J. (4)

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” Biophys. J. 63, 784–793 (1992).

M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).

C. Gosse, V. Croquette, “Magnetic tweezers: micromanipulation and force measurement at the molecular level,” Biophys. J. 82, 3314–3329 (2002).

G. J. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).

J. Mol. Biol. (1)

I. Tinoco, C. Bustamante, “How RNA folds,” J. Mol. Biol. 293, 271–281 (1999).
[CrossRef] [PubMed]

Nat. Struct. Biol. (1)

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[CrossRef] [PubMed]

Nature (3)

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

S. M. Block, L. S. Goldstein, B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348–352 (1990).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. F. Léger, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Structural transitions of a twisted and stretched DNA molecule,” Phys. Rev. Lett. 83, 1066 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (3)

B. D. Brower-Toland, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, “Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA,” Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

Y. Cui, C. Bustamante, “Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure,” Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, “Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation,” Proc. Natl. Acad. Sci. USA 93, 12937–12942 (1996).
[CrossRef]

Science (3)

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276, 1109–1112 (1997).
[CrossRef] [PubMed]

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, F. Caron, “DNA: an extensible molecule,” Science 271, 792–794 (1996).
[CrossRef] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic scheme of the optical tweezers setup: Nd:YAG laser (L) beam (λ = 1064 nm) expands through the beam expander (BE) to the diameter of 8 mm, overcovering slightly the back aperture of the Zeiss planapoC 63× water immersion objective (O). The microscope was slightly modified to introduce the beam into its optical path via the dichroic mirror (DM) fixed beneath the objective. The image of the trapped bead is projected by the microscope illumination system (C) through the microscope beam splitter (BS) onto the CCD camera (20% intensity) and the Hammamatsu S4349 four-quadrant diode (QD) [80%, with an additional 5× telescope (T) magnification], which detects the bead position with a resolution greater than 5 nm. A two-mirror (M1, M2) beam elevator allows for beam steering for precise alignment with the optical axis of the objective.

Fig. 2
Fig. 2

(A) Schematic representation and (B) photo of the magnetic attachment design. H1, H2, horizontal coils; V1, V2, vertical coils; S, experimental cell; O, objective; SH, specimen holder mounted on the piezoelectric actuator.

Fig. 3
Fig. 3

Half-turn of a pair of beads, comprising four discrete steps. Top, recorded images; bottom, schematic representation of the side view. The arrow indicates the axis of rotation.

Fig. 4
Fig. 4

Two DNA intertwisting molecules: (A) Scheme of the experiment; (B) DNA molecules intertwisting by 50 turns (left panel) is released (middle panel) by performing 50 turns in the opposite direction and is then reintroduced (right panel) by an additional 100 turns; (C) signal of the position detector, modulated by the defect of the bead (insert). Two spikes correspond to one turn.

Metrics