Abstract

Volume holographic gratings are recorded and retrieved in two commercially available glasses: Schott Foturan and Hoya PEG3. These materials are photoetchable, which describes their major application, but they also allow storage of volume holograms without any chemical etching. The samples are illuminated with ultraviolet light at a wavelength of 325 nm and thermally processed to achieve a maximum diffraction efficiency of ≈9% for a 1-mm-thick sample. The two glasses show similar behavior; the diffraction efficiencies in Foturan tend to be slightly larger, whereas PEG3 tends to have weaker light scattering.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Boffi, D. Piccinin, M. C. Ubaldi, Infrared Holography for Optical Communications (Springer, Berlin, 2003).
    [CrossRef]
  2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
    [CrossRef]
  3. S. D. Stookey, “A new photographic medium,” Ind. Eng. Chem. 41, 856–861 (1949).
    [CrossRef]
  4. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 34, 619–627 (1999).
    [CrossRef]
  5. N. F. Borrelli, D. L. Morse, P. A. Sachenik, “Integral photosensitive optical device and method,” U.S. patent4,514,053 (30April1985).
  6. T. R. Dietrich, W. Ehrfeld, M. Lacher, M. Kraemer, B. Speit, “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectron. Eng. 30, 497–504 (1996).
    [CrossRef]
  7. T. Fushie, T. Kagatsume, S. Matsui, “Multilayer printed circuit board and the manufacturing method,” U.S. patent6,339,197 (15January2002).
  8. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  9. M. Z. Zha, P. Amrhein, P. Gunter, “Measurement of phase-shift of photorefractive gratings by beam-coupling analysis,” J. Quantum Electron. 26, 788–792 (1990).
    [CrossRef]
  10. F. Kahmann, “Separate and simultaneous investigation of absorption gratings and refractive-index gratings by beam-coupling analysis,” J. Opt. Soc. Am. A 10, 1562–1569 (1993).
    [CrossRef]

1999 (1)

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 34, 619–627 (1999).
[CrossRef]

1996 (1)

T. R. Dietrich, W. Ehrfeld, M. Lacher, M. Kraemer, B. Speit, “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectron. Eng. 30, 497–504 (1996).
[CrossRef]

1993 (1)

1990 (1)

M. Z. Zha, P. Amrhein, P. Gunter, “Measurement of phase-shift of photorefractive gratings by beam-coupling analysis,” J. Quantum Electron. 26, 788–792 (1990).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1949 (1)

S. D. Stookey, “A new photographic medium,” Ind. Eng. Chem. 41, 856–861 (1949).
[CrossRef]

Amrhein, P.

M. Z. Zha, P. Amrhein, P. Gunter, “Measurement of phase-shift of photorefractive gratings by beam-coupling analysis,” J. Quantum Electron. 26, 788–792 (1990).
[CrossRef]

Boffi, P.

P. Boffi, D. Piccinin, M. C. Ubaldi, Infrared Holography for Optical Communications (Springer, Berlin, 2003).
[CrossRef]

Borrelli, N. F.

N. F. Borrelli, D. L. Morse, P. A. Sachenik, “Integral photosensitive optical device and method,” U.S. patent4,514,053 (30April1985).

Coufal, H. J.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
[CrossRef]

Dietrich, T. R.

T. R. Dietrich, W. Ehrfeld, M. Lacher, M. Kraemer, B. Speit, “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectron. Eng. 30, 497–504 (1996).
[CrossRef]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 34, 619–627 (1999).
[CrossRef]

Ehrfeld, W.

T. R. Dietrich, W. Ehrfeld, M. Lacher, M. Kraemer, B. Speit, “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectron. Eng. 30, 497–504 (1996).
[CrossRef]

Fushie, T.

T. Fushie, T. Kagatsume, S. Matsui, “Multilayer printed circuit board and the manufacturing method,” U.S. patent6,339,197 (15January2002).

Glebov, L. B.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 34, 619–627 (1999).
[CrossRef]

Glebova, L. N.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 34, 619–627 (1999).
[CrossRef]

Gunter, P.

M. Z. Zha, P. Amrhein, P. Gunter, “Measurement of phase-shift of photorefractive gratings by beam-coupling analysis,” J. Quantum Electron. 26, 788–792 (1990).
[CrossRef]

Kagatsume, T.

T. Fushie, T. Kagatsume, S. Matsui, “Multilayer printed circuit board and the manufacturing method,” U.S. patent6,339,197 (15January2002).

Kahmann, F.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kraemer, M.

T. R. Dietrich, W. Ehrfeld, M. Lacher, M. Kraemer, B. Speit, “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectron. Eng. 30, 497–504 (1996).
[CrossRef]

Lacher, M.

T. R. Dietrich, W. Ehrfeld, M. Lacher, M. Kraemer, B. Speit, “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectron. Eng. 30, 497–504 (1996).
[CrossRef]

Matsui, S.

T. Fushie, T. Kagatsume, S. Matsui, “Multilayer printed circuit board and the manufacturing method,” U.S. patent6,339,197 (15January2002).

Morse, D. L.

N. F. Borrelli, D. L. Morse, P. A. Sachenik, “Integral photosensitive optical device and method,” U.S. patent4,514,053 (30April1985).

Piccinin, D.

P. Boffi, D. Piccinin, M. C. Ubaldi, Infrared Holography for Optical Communications (Springer, Berlin, 2003).
[CrossRef]

Psaltis, D.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
[CrossRef]

Richardson, K. C.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 34, 619–627 (1999).
[CrossRef]

Sachenik, P. A.

N. F. Borrelli, D. L. Morse, P. A. Sachenik, “Integral photosensitive optical device and method,” U.S. patent4,514,053 (30April1985).

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
[CrossRef]

Smirnov, V. I.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 34, 619–627 (1999).
[CrossRef]

Speit, B.

T. R. Dietrich, W. Ehrfeld, M. Lacher, M. Kraemer, B. Speit, “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectron. Eng. 30, 497–504 (1996).
[CrossRef]

Stookey, S. D.

S. D. Stookey, “A new photographic medium,” Ind. Eng. Chem. 41, 856–861 (1949).
[CrossRef]

Ubaldi, M. C.

P. Boffi, D. Piccinin, M. C. Ubaldi, Infrared Holography for Optical Communications (Springer, Berlin, 2003).
[CrossRef]

Zha, M. Z.

M. Z. Zha, P. Amrhein, P. Gunter, “Measurement of phase-shift of photorefractive gratings by beam-coupling analysis,” J. Quantum Electron. 26, 788–792 (1990).
[CrossRef]

Appl. Opt. (1)

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 34, 619–627 (1999).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Ind. Eng. Chem. (1)

S. D. Stookey, “A new photographic medium,” Ind. Eng. Chem. 41, 856–861 (1949).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quantum Electron. (1)

M. Z. Zha, P. Amrhein, P. Gunter, “Measurement of phase-shift of photorefractive gratings by beam-coupling analysis,” J. Quantum Electron. 26, 788–792 (1990).
[CrossRef]

Microelectron. Eng. (1)

T. R. Dietrich, W. Ehrfeld, M. Lacher, M. Kraemer, B. Speit, “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectron. Eng. 30, 497–504 (1996).
[CrossRef]

Other (4)

T. Fushie, T. Kagatsume, S. Matsui, “Multilayer printed circuit board and the manufacturing method,” U.S. patent6,339,197 (15January2002).

N. F. Borrelli, D. L. Morse, P. A. Sachenik, “Integral photosensitive optical device and method,” U.S. patent4,514,053 (30April1985).

P. Boffi, D. Piccinin, M. C. Ubaldi, Infrared Holography for Optical Communications (Springer, Berlin, 2003).
[CrossRef]

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Setup used for holographic recording.

Fig. 2
Fig. 2

Diffraction efficiency η versus readout angle Δθ = (θ — θB) for a Foturan sample at the readout wavelength λ = 633 nm. The dashed curve is a fit of the coupled-wave theory8 to the experimental data (fit parameters d = 0.63 mm and the grating amplitude).

Tables (2)

Tables Icon

Table 1 Compositions of Foturana and PEG3b

Tables Icon

Table 2 Typical Sample Processing and Experimental Results for Foturan and PEG3a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Irradiation : Ce 3 + λ = 325 nm Ce 4 + + e ,
1 . Annealing : n A g + + n e ( A g ) n ,
2 . Annealing : ( A g ) n as seed crystals lithium metasilicate , causes refractive-index and absorption changes .
η = I diff I diff + I trans .

Metrics