Abstract

We have developed and characterized graded-index optical fibers for the mid-IR spectral range, based on silver chlorobromide (AgClBr) crystals. A preform was fabricated by inserting a cylindrical rod made of AgCl0.1Br0.9 into a tube made of AgCl0.9Br0.1. The preform was heated in an oven, causing diffusion of Cl into the outer layer of the rod, thus reducing its index of refraction. The rod was removed from the tube and was then extruded through a die to form a graded-index fiber. Such a fiber was analyzed, investigated, and compared with a step-index fiber made of AgClBr. The attenuation of a 0.9–mm-diameter graded-index fiber was found to be 2.4 dB/m, and the attenuation of a 1.2–mm-diameter graded-index fiber was 4 dB/m at 10.6 µm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike, “Recent progress in high speed polymer optical fiber,” Mol. Cryst. Liq. Cryst. 315, 247–256 (1998).
    [CrossRef]
  2. T. Ishigure, Y. Koike, “Novel photonics polymers in high speed telecommunication,” Mol. Cryst. Liq. Cryst. 353, 451–469 (2000).
    [CrossRef]
  3. A. H. Cherin, An Introduction to Optical Fibers (McGraw-Hill, New York, 1983).
  4. I. D. Aggarwal, G. Lu, Fluoride Glass Fiber Optics (Academic, Boston, Mass., 1991).
  5. J. S. Sanghera, I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
    [CrossRef]
  6. J. S. Sanghera, I. D. Aggarwal, Infrared Fiber Optics (CRC Press, Boca Raton, Fla., 1998).
  7. F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
    [CrossRef]
  8. E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
    [CrossRef]
  9. D. C. Tran, M. J. Burk, G. H. Sigel, K. H. Levin, “Preparation of single-mode and multimode graded-index fluoride-glass optical fibers using a reactive vapor transport,” in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), pp. 48–49.
  10. S. Kachi, M. Kimura, K. Shiroyama, “Graded-index-type crystalline fiber for IR light transmission,” Electron. Lett. 22, 530–531 (1986).
    [CrossRef]
  11. B. Dekel, A. Katzir, “Mid-infrared diffused planar waveguides made of silver halide chloro-bromide,” Appl. Opt. 41, 3622–3627 (2002).
    [CrossRef] [PubMed]
  12. J. A. Harrington, Infrared Fiber Optics and Their Applications, Vol. 135 of SPIE Press Monographs (SPIE, Bellingham, Washington, 2004).
    [CrossRef]
  13. D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
    [CrossRef] [PubMed]
  14. J. A. Harrington, A. G. Standlee, “Attenuation at 10.6 µm in loaded and unloaded polycrystalline KRS-5 fibers,” Appl. Opt. 22, 3073–3078 (1983).
    [CrossRef]
  15. A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
    [CrossRef]
  16. D. L. Mills, “Light scattering by point defects in insulating crystals,” J. Appl. Phys. 51, 5864–5867 (1980).
    [CrossRef]

2003 (1)

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

2002 (1)

2000 (1)

T. Ishigure, Y. Koike, “Novel photonics polymers in high speed telecommunication,” Mol. Cryst. Liq. Cryst. 353, 451–469 (2000).
[CrossRef]

1999 (1)

J. S. Sanghera, I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

1998 (1)

Y. Koike, “Recent progress in high speed polymer optical fiber,” Mol. Cryst. Liq. Cryst. 315, 247–256 (1998).
[CrossRef]

1996 (1)

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

1993 (1)

1988 (1)

1986 (1)

S. Kachi, M. Kimura, K. Shiroyama, “Graded-index-type crystalline fiber for IR light transmission,” Electron. Lett. 22, 530–531 (1986).
[CrossRef]

1983 (1)

1980 (1)

D. L. Mills, “Light scattering by point defects in insulating crystals,” J. Appl. Phys. 51, 5864–5867 (1980).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

I. D. Aggarwal, G. Lu, Fluoride Glass Fiber Optics (Academic, Boston, Mass., 1991).

J. S. Sanghera, I. D. Aggarwal, Infrared Fiber Optics (CRC Press, Boca Raton, Fla., 1998).

Bunimovich, D.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
[CrossRef] [PubMed]

Burk, M. J.

D. C. Tran, M. J. Burk, G. H. Sigel, K. H. Levin, “Preparation of single-mode and multimode graded-index fluoride-glass optical fibers using a reactive vapor transport,” in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), pp. 48–49.

Cherin, A. H.

A. H. Cherin, An Introduction to Optical Fibers (McGraw-Hill, New York, 1983).

Dekel, B.

DeRowe, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Eyal, O.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

German, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Gotshal, Y.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Harrington, J. A.

J. A. Harrington, A. G. Standlee, “Attenuation at 10.6 µm in loaded and unloaded polycrystalline KRS-5 fibers,” Appl. Opt. 22, 3073–3078 (1983).
[CrossRef]

J. A. Harrington, Infrared Fiber Optics and Their Applications, Vol. 135 of SPIE Press Monographs (SPIE, Bellingham, Washington, 2004).
[CrossRef]

Ishigure, T.

T. Ishigure, Y. Koike, “Novel photonics polymers in high speed telecommunication,” Mol. Cryst. Liq. Cryst. 353, 451–469 (2000).
[CrossRef]

Kachi, S.

S. Kachi, M. Kimura, K. Shiroyama, “Graded-index-type crystalline fiber for IR light transmission,” Electron. Lett. 22, 530–531 (1986).
[CrossRef]

Katzir, A.

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

B. Dekel, A. Katzir, “Mid-infrared diffused planar waveguides made of silver halide chloro-bromide,” Appl. Opt. 41, 3622–3627 (2002).
[CrossRef] [PubMed]

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
[CrossRef] [PubMed]

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
[CrossRef]

Kimura, M.

S. Kachi, M. Kimura, K. Shiroyama, “Graded-index-type crystalline fiber for IR light transmission,” Electron. Lett. 22, 530–531 (1986).
[CrossRef]

Koike, Y.

T. Ishigure, Y. Koike, “Novel photonics polymers in high speed telecommunication,” Mol. Cryst. Liq. Cryst. 353, 451–469 (2000).
[CrossRef]

Y. Koike, “Recent progress in high speed polymer optical fiber,” Mol. Cryst. Liq. Cryst. 315, 247–256 (1998).
[CrossRef]

Levin, K. H.

D. C. Tran, M. J. Burk, G. H. Sigel, K. H. Levin, “Preparation of single-mode and multimode graded-index fluoride-glass optical fibers using a reactive vapor transport,” in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), pp. 48–49.

Levite, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Lu, G.

I. D. Aggarwal, G. Lu, Fluoride Glass Fiber Optics (Academic, Boston, Mass., 1991).

Mills, D. L.

D. L. Mills, “Light scattering by point defects in insulating crystals,” J. Appl. Phys. 51, 5864–5867 (1980).
[CrossRef]

Moser, F.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Nagli, L.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Rave, E.

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

Ravid, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Roodenko, K.

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

Sa’ar, A.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, Infrared Fiber Optics (CRC Press, Boca Raton, Fla., 1998).

Scharf, V.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shalem, S.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shemesh, D.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shiroyama, K.

S. Kachi, M. Kimura, K. Shiroyama, “Graded-index-type crystalline fiber for IR light transmission,” Electron. Lett. 22, 530–531 (1986).
[CrossRef]

Sigel, G. H.

D. C. Tran, M. J. Burk, G. H. Sigel, K. H. Levin, “Preparation of single-mode and multimode graded-index fluoride-glass optical fibers using a reactive vapor transport,” in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), pp. 48–49.

Simchi, R.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Standlee, A. G.

Tran, D. C.

D. C. Tran, M. J. Burk, G. H. Sigel, K. H. Levin, “Preparation of single-mode and multimode graded-index fluoride-glass optical fibers using a reactive vapor transport,” in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), pp. 48–49.

Vasserman, I.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

Electron. Lett. (1)

S. Kachi, M. Kimura, K. Shiroyama, “Graded-index-type crystalline fiber for IR light transmission,” Electron. Lett. 22, 530–531 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

J. Appl. Phys. (1)

D. L. Mills, “Light scattering by point defects in insulating crystals,” J. Appl. Phys. 51, 5864–5867 (1980).
[CrossRef]

J. Non-Cryst. Solids (1)

J. S. Sanghera, I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mol. Cryst. Liq. Cryst. (2)

Y. Koike, “Recent progress in high speed polymer optical fiber,” Mol. Cryst. Liq. Cryst. 315, 247–256 (1998).
[CrossRef]

T. Ishigure, Y. Koike, “Novel photonics polymers in high speed telecommunication,” Mol. Cryst. Liq. Cryst. 353, 451–469 (2000).
[CrossRef]

Other (5)

A. H. Cherin, An Introduction to Optical Fibers (McGraw-Hill, New York, 1983).

I. D. Aggarwal, G. Lu, Fluoride Glass Fiber Optics (Academic, Boston, Mass., 1991).

J. S. Sanghera, I. D. Aggarwal, Infrared Fiber Optics (CRC Press, Boca Raton, Fla., 1998).

D. C. Tran, M. J. Burk, G. H. Sigel, K. H. Levin, “Preparation of single-mode and multimode graded-index fluoride-glass optical fibers using a reactive vapor transport,” in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), pp. 48–49.

J. A. Harrington, Infrared Fiber Optics and Their Applications, Vol. 135 of SPIE Press Monographs (SPIE, Bellingham, Washington, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Rod-in-tube process used to fabricate a GI fiber.

Fig. 2
Fig. 2

Atomic composition of a GI silver halide fiber with a diameter of 1.2 mm. (a) Br is shown as white dots and Cl as black dots. (b) In this complementary plot, Br is shown as black dots and Cl as white dots. Temperature 41 °C, 21 days.

Fig. 3
Fig. 3

Atomic composition and the index of refraction in a diffused rod. (a) The solid curve represents the Br concentration and the dotted curve is the Cl concentration as a function of r. (b) The index of refraction as a function of r.

Fig. 4
Fig. 4

Atomic percentage and the index of refraction for a diffused fiber of diameter 0.9 mm. (a) The solid curve represents the Br concentration and the dotted curve is the Cl concentration. (b) The index of refraction.

Fig. 5
Fig. 5

Experimental setup used to measure the scattered coefficient.

Fig. 6
Fig. 6

Scattering coefficients for four fibers with diameters of 0.9 mm.

Fig. 7
Fig. 7

Experimental setup used to measure the far-field distribution from a fiber.

Fig. 8
Fig. 8

Far-field pattern for a 0.9–mm GI silver halide fiber.

Fig. 9
Fig. 9

θ eff of the far-field pattern for several 0.9–mm fibers.

Tables (1)

Tables Icon

Table 1 Attenuation Coefficients for Various Fibers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α sc ( z ) = 1 P in P sc Δ z exp ( α T z ) ,
y = y 0 + [ A 2 ( θ eff 2 ) ] exp [ ( x x 0 ) 2 2 ( θ eff 2 ) 2 ] ,
attenuation = 10 × log 10 ( P out / P in ) .

Metrics