Abstract

A novel type of liquid microlens, bounded by a microfabricated, distensible membrane and activated by a microfluidic liquid-handling system, is presented. By use of an elastomer membrane fabricated by spin coating onto a dry-etched silicon substrate, the liquid-filled cavity acts as a lens whereby applied pressure changes the membrane distension and thus the focal length. Both plano–convex and plano–concave lenses, individual elements as well as arrays, were fabricated and tested. The lens surface roughness was seen to be ∼9 nm rms, and the focal length could be tuned from 1 to 18 mm. This lens represents a robust, self-contained tunable optical structure suitable for use in, for example, a medical environment.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription