Abstract

The effect of azimuthal orientation on the electromagnetic coupling of surface plasmons with the incident and diffracted light of a grating-coupled surface-plasmon resonance (GC-SPR) biosensor is investigated, and its practical implications are explored. For this purpose a GC-SPR biosensor model is considered, and well-established rigorous coupled-wave analysis is used. Numerical results indicate significant variations in surface-plasmon resonance characteristics in connection with the interaction between surface-plasmon polaritons associated with multiple-order diffraction. The results are discussed as they relate to applications that require minimal rotation sensitivity.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Nylanderm, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
    [CrossRef]
  2. K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160–1163 (1988).
    [CrossRef] [PubMed]
  3. B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  4. S. Löfås, B. Johnson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
    [CrossRef]
  5. B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
    [CrossRef]
  6. J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  7. E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  8. Y. Y. Teng, E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
    [CrossRef]
  9. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
    [CrossRef]
  10. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  11. Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmons on gratings: coupling in the minigap regions,” Solid State Commun. 46, 95–99 (1983).
    [CrossRef]
  12. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 6.
  13. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  14. M. C. Hutley, Diffraction Gratings (Academic, San Diego, Calif., 1982), pp. 175–213.
  15. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 285–321.
  16. B. T. Hallam, J. R. Sambles, S. C. Kitson, “Ultraviolet surface plasmons on aluminum and a noncontact technique for characterizing short-pitch gratings,” J. Mod. Opt. 46, 1099–1105 (1999).
  17. S. Park, G. Lee, S. H. Song, C. H. Oh, P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
    [CrossRef] [PubMed]
  18. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995).
    [CrossRef]
  19. J. J. Ramsden, “Optical biosensors,” J. Mol. Recognit. 10, 109–120 (1997).
    [CrossRef] [PubMed]
  20. J. M. Brockman, S. M. Fernandez, “Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing,” Am. Lab. (Shelton, Conn.) 33, 37–40 (2001).
  21. T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, D. A. Lawrence, “Shrinking the biologic world—nanobiotechnologies for toxicology,” Toxicol. Sci. 74, 235–244 (2003).
    [CrossRef] [PubMed]
  22. M. Kreiter, S. Mittler, W. Knoll, J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65, 125415 (2002).
    [CrossRef]
  23. S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147–154 (1996).
    [CrossRef]
  24. M. Kreiter, T. Neumann, S. Mittler, W. Knoll, J. R. Sambles, “Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances,” Phys. Rev. B 64, 75406 (2001).
    [CrossRef]
  25. A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997).
    [CrossRef]
  26. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  28. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

2003

T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, D. A. Lawrence, “Shrinking the biologic world—nanobiotechnologies for toxicology,” Toxicol. Sci. 74, 235–244 (2003).
[CrossRef] [PubMed]

S. Park, G. Lee, S. H. Song, C. H. Oh, P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
[CrossRef] [PubMed]

2002

M. Kreiter, S. Mittler, W. Knoll, J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65, 125415 (2002).
[CrossRef]

2001

J. M. Brockman, S. M. Fernandez, “Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing,” Am. Lab. (Shelton, Conn.) 33, 37–40 (2001).

M. Kreiter, T. Neumann, S. Mittler, W. Knoll, J. R. Sambles, “Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances,” Phys. Rev. B 64, 75406 (2001).
[CrossRef]

1999

B. T. Hallam, J. R. Sambles, S. C. Kitson, “Ultraviolet surface plasmons on aluminum and a noncontact technique for characterizing short-pitch gratings,” J. Mod. Opt. 46, 1099–1105 (1999).

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1997

1996

S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147–154 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

1995

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995).
[CrossRef]

1990

S. Löfås, B. Johnson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
[CrossRef]

1988

1986

1983

Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmons on gratings: coupling in the minigap regions,” Solid State Commun. 46, 95–99 (1983).
[CrossRef]

1981

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

1971

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

1968

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[CrossRef]

1967

Y. Y. Teng, E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
[CrossRef]

1956

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[CrossRef]

Ballantyne, J. M.

Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmons on gratings: coupling in the minigap regions,” Solid State Commun. 46, 95–99 (1983).
[CrossRef]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147–154 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Brockman, J. M.

J. M. Brockman, S. M. Fernandez, “Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing,” Am. Lab. (Shelton, Conn.) 33, 37–40 (2001).

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

Chen, Y. J.

Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmons on gratings: coupling in the minigap regions,” Solid State Commun. 46, 95–99 (1983).
[CrossRef]

Corn, R. M.

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[CrossRef]

Fernandez, S. M.

J. M. Brockman, S. M. Fernandez, “Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing,” Am. Lab. (Shelton, Conn.) 33, 37–40 (2001).

Frutos, A. G.

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Gaylord, T. K.

Gershon, P. D.

Hadjout, N.

T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, D. A. Lawrence, “Shrinking the biologic world—nanobiotechnologies for toxicology,” Toxicol. Sci. 74, 235–244 (2003).
[CrossRef] [PubMed]

Hallam, B. T.

B. T. Hallam, J. R. Sambles, S. C. Kitson, “Ultraviolet surface plasmons on aluminum and a noncontact technique for characterizing short-pitch gratings,” J. Mod. Opt. 46, 1099–1105 (1999).

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic, San Diego, Calif., 1982), pp. 175–213.

Johnson, B.

S. Löfås, B. Johnson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
[CrossRef]

Kawata, S.

Kim, P. S.

Kitson, S. C.

B. T. Hallam, J. R. Sambles, S. C. Kitson, “Ultraviolet surface plasmons on aluminum and a noncontact technique for characterizing short-pitch gratings,” J. Mod. Opt. 46, 1099–1105 (1999).

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147–154 (1996).
[CrossRef]

Knoll, W.

M. Kreiter, S. Mittler, W. Knoll, J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65, 125415 (2002).
[CrossRef]

M. Kreiter, T. Neumann, S. Mittler, W. Knoll, J. R. Sambles, “Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances,” Phys. Rev. B 64, 75406 (2001).
[CrossRef]

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Kolomenskii, A. A.

Kosteles, E. S.

Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmons on gratings: coupling in the minigap regions,” Solid State Commun. 46, 95–99 (1983).
[CrossRef]

Kreiter, M.

M. Kreiter, S. Mittler, W. Knoll, J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65, 125415 (2002).
[CrossRef]

M. Kreiter, T. Neumann, S. Mittler, W. Knoll, J. R. Sambles, “Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances,” Phys. Rev. B 64, 75406 (2001).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Lawrence, D. A.

T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, D. A. Lawrence, “Shrinking the biologic world—nanobiotechnologies for toxicology,” Toxicol. Sci. 74, 235–244 (2003).
[CrossRef] [PubMed]

Lee, G.

Liedberg, B.

C. Nylanderm, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

Lind, T.

C. Nylanderm, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

Loewen, E. G.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 285–321.

Löfås, S.

S. Löfås, B. Johnson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
[CrossRef]

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995).
[CrossRef]

Lynes, M. A.

T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, D. A. Lawrence, “Shrinking the biologic world—nanobiotechnologies for toxicology,” Toxicol. Sci. 74, 235–244 (2003).
[CrossRef] [PubMed]

Matsubara, K.

Minami, S.

Mittler, S.

M. Kreiter, S. Mittler, W. Knoll, J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65, 125415 (2002).
[CrossRef]

M. Kreiter, T. Neumann, S. Mittler, W. Knoll, J. R. Sambles, “Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances,” Phys. Rev. B 64, 75406 (2001).
[CrossRef]

Moharam, M. G.

Nelson, B. P.

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

Neumann, T.

M. Kreiter, T. Neumann, S. Mittler, W. Knoll, J. R. Sambles, “Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances,” Phys. Rev. B 64, 75406 (2001).
[CrossRef]

Nylanderm, C.

C. Nylanderm, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

Oh, C. H.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

Park, S.

Popov, E.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 285–321.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 6.

Ramsden, J. J.

J. J. Ramsden, “Optical biosensors,” J. Mol. Recognit. 10, 109–120 (1997).
[CrossRef] [PubMed]

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[CrossRef]

Rothenhäusler, B.

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sambles, J. R.

M. Kreiter, S. Mittler, W. Knoll, J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65, 125415 (2002).
[CrossRef]

M. Kreiter, T. Neumann, S. Mittler, W. Knoll, J. R. Sambles, “Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances,” Phys. Rev. B 64, 75406 (2001).
[CrossRef]

B. T. Hallam, J. R. Sambles, S. C. Kitson, “Ultraviolet surface plasmons on aluminum and a noncontact technique for characterizing short-pitch gratings,” J. Mod. Opt. 46, 1099–1105 (1999).

S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147–154 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Schuessler, H. A.

Seymour, R. J.

Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmons on gratings: coupling in the minigap regions,” Solid State Commun. 46, 95–99 (1983).
[CrossRef]

Sonek, G. J.

Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmons on gratings: coupling in the minigap regions,” Solid State Commun. 46, 95–99 (1983).
[CrossRef]

Song, S. H.

Stern, E. A.

Y. Y. Teng, E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
[CrossRef]

Teng, Y. Y.

Y. Y. Teng, E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
[CrossRef]

Unfricht, D. W.

T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, D. A. Lawrence, “Shrinking the biologic world—nanobiotechnologies for toxicology,” Toxicol. Sci. 74, 235–244 (2003).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Zieziulewicz, T. J.

T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, D. A. Lawrence, “Shrinking the biologic world—nanobiotechnologies for toxicology,” Toxicol. Sci. 74, 235–244 (2003).
[CrossRef] [PubMed]

Am. Lab. (Shelton, Conn.)

J. M. Brockman, S. M. Fernandez, “Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing,” Am. Lab. (Shelton, Conn.) 33, 37–40 (2001).

Anal. Chem.

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

Appl. Opt.

J. Chem. Soc. Chem. Commun.

S. Löfås, B. Johnson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
[CrossRef]

J. Mod. Opt.

B. T. Hallam, J. R. Sambles, S. C. Kitson, “Ultraviolet surface plasmons on aluminum and a noncontact technique for characterizing short-pitch gratings,” J. Mod. Opt. 46, 1099–1105 (1999).

J. Mol. Recognit.

J. J. Ramsden, “Optical biosensors,” J. Mol. Recognit. 10, 109–120 (1997).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nature

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Opt. Commun.

S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147–154 (1996).
[CrossRef]

Opt. Lett.

Phys. Rev. B

M. Kreiter, T. Neumann, S. Mittler, W. Knoll, J. R. Sambles, “Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances,” Phys. Rev. B 64, 75406 (2001).
[CrossRef]

M. Kreiter, S. Mittler, W. Knoll, J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65, 125415 (2002).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Phys. Rev. Lett.

Y. Y. Teng, E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
[CrossRef]

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968).
[CrossRef]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Sens. Actuators

C. Nylanderm, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

Sens. Actuators B

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995).
[CrossRef]

Solid State Commun.

Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmons on gratings: coupling in the minigap regions,” Solid State Commun. 46, 95–99 (1983).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Toxicol. Sci.

T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, D. A. Lawrence, “Shrinking the biologic world—nanobiotechnologies for toxicology,” Toxicol. Sci. 74, 235–244 (2003).
[CrossRef] [PubMed]

Z. Phys.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 6.

M. C. Hutley, Diffraction Gratings (Academic, San Diego, Calif., 1982), pp. 175–213.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 285–321.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross sections of the GC-SPR configuration explored in this paper: A grating is placed on top of a thin film with a dielectric substrate. Incident light is directly coupled to the grating from the probing medium, water, which is typically used to deliver sample analytes. θ denotes the angle of incidence. df and dg, the thicknesses of the gold film and the grating depth, are 50 and 40 nm, respectively. The grating period Λ is fixed at 867 nm (=λ).

Fig. 2
Fig. 2

Azimuthal angle ψ, defined as the angle between the projection of incident wave vector ki onto the grating plane and grating vector kg. The incident light is TM polarized.

Fig. 3
Fig. 3

Reflectance and transmittance of multiple diffraction components for the GC-SPR biosensor structure of Fig. 1 for azimuthal angles ψ: (a) ψ = 0°, (b) ψ = 30°, (c) ψ = 60°, (d) ψ = 90°. NG, the SPR response with no grating, shown as a reference; mR or mT stands for mth diffraction order, with R or T for reflection or transmission.

Fig. 4
Fig. 4

Shift of the incidence angle at SPR (θin) as the GC-SPR of Fig. 1 is subject to an increase of azimuthal angle ψ from 0° to 90°. mR or mT denotes the mth reflection or transmission diffraction order that is associated with a specific SPR characteristic.

Fig. 5
Fig. 5

Angular spread Δθ of a focused beam incident at polar angle θ creates azimuthal spread Δψ. The optical axis of the incident beam is assumed to be in the plane of incidence formed by grating vector kg and the vector normal to the grating–film interface. Inset, cross section of the GC-SPR structure.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k i 2 sin 2 θ in 2 m k g k i sin θ in cos ψ + m 2 k g 2 = k SPP 2 = ( ω 0 c ) 2 ɛ s ɛ f ɛ s + ɛ f ,
sin θ in = λ n i Λ [ m ± ( ɛ s ɛ f ɛ s + ɛ f m 2 sin 2 ψ ) 1 / 2 ] .
cos ψ = λ 2 n i Λ sin θ in | m 1 + m 2 | ,
ɛ s ɛ f ɛ s + ɛ f m 2 .
λ 2 n i Λ sin θ in | m 1 + m 2 | 1
sin θ tan Δ ψ 2 = tan Δ θ 2 ,
Δ θ in m 2 λ 2 n i Λ 1 ɛ s + 1 ɛ f sin 2 ( Δ θ / 2 ) sin 2 θ + sin 2 ( Δ θ / 2 ) .

Metrics