Abstract

Micrometer-sized reflection holograms can be written into a rapidly rotating homogeneous photopolymer disk at the focus of a high-numerical-aperture beam and its retroreflection to implement high-capacity multilayer digital data storage. This retroreflection is generated by an optical system with positive unity magnification to ensure passive alignment of the counterpropagating beam. Analysis reveals that the storage capacity and transfer rate of this bit-based holographic storage system compare favorably with traditional page-based systems but at a fraction of the system complexity and cost. The analysis is experimentally validated at 532 nm by writing and reading 12 layers of microholograms in a 125-µm photopolymer disk continuously rotating at 3600 rpm. The experimental results predict a capacity limit of 140 Gbytes in a millimeter-thick disk or over 1 Tbyte with the wavelength and numerical aperture of Blu-Ray.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  3. J. F. Heanue, “Volume holographic storage of digital data implemented in photorefractive media,” Ph.D. Dissertation (Stanford University, Stanford, California, 1995).
  4. A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990).
  5. K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, T. C. Strand, “Multilevel volumetric optical disk storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 247–250 (1994).
    [CrossRef]
  6. D. H. Pontius, “Confocal optical microscopy system for multilevel data storage and retrieval,” U.S. Patent5,619,371, (8April1997).
  7. A. Toriumi, S. Kawata, M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1998).
    [CrossRef]
  8. W. I. Imaino, H. J. Rosen, K. A. Rubin, T. C. Strand, M. E. Best, “Extending the compact disk format to high capacity for video applications,” in 1994 Topical Meetings on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 254–259 (1994).
    [CrossRef]
  9. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
    [CrossRef]
  10. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
    [CrossRef]
  11. T. Wilson, Y. Kawata, S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21, 1003–1005 (1996).
    [CrossRef] [PubMed]
  12. S. Hunter, F. Kiamilev, S. C. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
    [CrossRef] [PubMed]
  13. M. M. Wang, S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39, 1826–1834 (2000).
    [CrossRef]
  14. Y. Kawata, T. Tanaka, S. Kawata, R. Juskaitis, T. Wilson, “Differential phase-contrast microscope with a split detector for the readout system of a multilayered optical memory,” Appl. Opt. 35, 2466–2470 (1996).
    [CrossRef] [PubMed]
  15. S. Homan, A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron Lett. 31, 621–623 (1995).
    [CrossRef]
  16. H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt, “High-density disk storage by multiplexed microholograms,” in IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
    [CrossRef]
  17. S. Orlic, S. Ulm, H. Ju. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
    [CrossRef]
  18. See, for example, http://www.inphase-tech.com/products/tapestrymedia/index.html .
  19. P. Mouroulis, J. Macdonald, Geometrical Optics and Optical Design (Oxford U. Press, New York, 1997).
  20. S. Somalingam, K. Dressbach, M. Hain, S. Stankovic, T. Tschudi, J. Knittel, H. Richter, “Effective spherical aberration compensation by use of a nematic liquid-crystal device,” Appl. Opt. 43, 2722–2729 (2004).
    [CrossRef] [PubMed]
  21. M. E. McDonald, Y. C. Lee, “Spherical aberration correction using flying lens and method,” U.S. Patent6,064,529 (16May2000).
  22. M. E. McDonald, A. J. Daiber, “Method and apparatus for adjustable spherical aberration correction and focusing,” U.S. Patent6,091,549 (18July2000).
  23. A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,288,804 (11September2001).
  24. A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,147,782 (14November2000).
  25. M. McDonald, R. McLeod, “Focus error signal generation using a birefringent lens with confocal detection,” U.S. Patent6,269,057 (31July2001).
  26. Z. Liu, G. J. Steckman, D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
    [CrossRef]
  27. G. Odian, Principles of Polymerization (McGraw-Hill, New York, 1970).
  28. W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [CrossRef] [PubMed]
  29. J. T. Sheridan, J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  30. R. Hazel, E. LaBudde, “Preformating method for random recording and playback of an optical memory disk,” SPIE 35th Annual Conference Proceedings on Decision and Control, B7 (1982).
  31. T. Tanaka, S. Kawata, “Comparison of recording densities in three-dimensional optical storage systems: multilayered bit recording versus angularly multiplexed holographic recording,” J. Opt. Soc. Am. A 13, 935–943 (1996).
    [CrossRef]
  32. A. C. Strasser, E. S. Maniloff, K. M. Johnson, S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–9 (1989).
    [CrossRef] [PubMed]
  33. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  34. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  35. B. M. King, M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681–6688 (2000).
    [CrossRef]
  36. A. Daiber, R. McLeod, R. Snyder, “Sparse modulation codes for holographic data storage,” U.S. Patent6,549,664 (15April2003).
  37. U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
    [CrossRef]
  38. X. An, D. Psaltis, G. W. Burr, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999).
    [CrossRef]
  39. M. A. Neifeld, M. McDonald, “Lens-design issues affecting parallel readout of optical disks,” Appl. Opt. 34, 5167–5174 (1995).
    [CrossRef] [PubMed]
  40. S. S. Orlov, “Volume holographic data storage,” Commun. ACM 23, 47–54 (2000).
  41. T. Maeda, H. Koyanagi, “Semiconfocal optical disk readout with one linear-spread beam,” Appl. Opt. 37, 8167–8172 (1998).
    [CrossRef]
  42. R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
    [CrossRef]

2004 (1)

2002 (1)

Z. Liu, G. J. Steckman, D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

2001 (1)

S. Orlic, S. Ulm, H. Ju. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

2000 (4)

1999 (3)

1998 (3)

1996 (4)

1995 (2)

S. Homan, A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron Lett. 31, 621–623 (1995).
[CrossRef]

M. A. Neifeld, M. McDonald, “Lens-design issues affecting parallel readout of optical disks,” Appl. Opt. 34, 5167–5174 (1995).
[CrossRef] [PubMed]

1994 (1)

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

1990 (1)

1989 (1)

1982 (1)

R. Hazel, E. LaBudde, “Preformating method for random recording and playback of an optical memory disk,” SPIE 35th Annual Conference Proceedings on Decision and Control, B7 (1982).

1971 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1963 (1)

An, X.

Arai, R.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Best, M. E.

W. I. Imaino, H. J. Rosen, K. A. Rubin, T. C. Strand, M. E. Best, “Extending the compact disk format to high capacity for video applications,” in 1994 Topical Meetings on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 254–259 (1994).
[CrossRef]

Brand, U.

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

Burr, G. W.

Colburn, W. S.

Coufal, H. J.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

Daiber, A.

A. Daiber, R. McLeod, R. Snyder, “Sparse modulation codes for holographic data storage,” U.S. Patent6,549,664 (15April2003).

Daiber, A. J.

A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,147,782 (14November2000).

M. E. McDonald, A. J. Daiber, “Method and apparatus for adjustable spherical aberration correction and focusing,” U.S. Patent6,091,549 (18July2000).

A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,288,804 (11September2001).

Dhal, P. K.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Dhar, L.

Dressbach, K.

Eichler, H. J.

H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt, “High-density disk storage by multiplexed microholograms,” in IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

Eichler, H. Ju.

S. Orlic, S. Ulm, H. Ju. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

Esener, S. C.

Goggin, S. D. D.

Grochmalicki, J.

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

Gu, M.

Hain, M.

Haines, K. A.

Hale, A.

Hazel, R.

R. Hazel, E. LaBudde, “Preformating method for random recording and playback of an optical memory disk,” SPIE 35th Annual Conference Proceedings on Decision and Control, B7 (1982).

Heanue, J. F.

J. F. Heanue, “Volume holographic storage of digital data implemented in photorefractive media,” Ph.D. Dissertation (Stanford University, Stanford, California, 1995).

Hester, G.

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

Homan, S.

S. Homan, A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron Lett. 31, 621–623 (1995).
[CrossRef]

Horner, M. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Hunter, S.

Imaino, W.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, T. C. Strand, “Multilevel volumetric optical disk storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 247–250 (1994).
[CrossRef]

Imaino, W. I.

W. I. Imaino, H. J. Rosen, K. A. Rubin, T. C. Strand, M. E. Best, “Extending the compact disk format to high capacity for video applications,” in 1994 Topical Meetings on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 254–259 (1994).
[CrossRef]

Ingwall, R. T.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Johnson, K. M.

Juskaitis, R.

Katoh, K.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Katz, H. E.

Kawata, S.

Kawata, Y.

Kiamilev, F.

King, B. M.

Knittel, J.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kolb, E. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Koyanagi, H.

Kuemmel, P.

H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt, “High-density disk storage by multiplexed microholograms,” in IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

LaBudde, E.

R. Hazel, E. LaBudde, “Preformating method for random recording and playback of an optical memory disk,” SPIE 35th Annual Conference Proceedings on Decision and Control, B7 (1982).

Lawrence, J. R.

Lee, Y. C.

M. E. McDonald, Y. C. Lee, “Spherical aberration correction using flying lens and method,” U.S. Patent6,064,529 (16May2000).

Li, H.-Y. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Liu, Z.

Z. Liu, G. J. Steckman, D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

Macdonald, J.

P. Mouroulis, J. Macdonald, Geometrical Optics and Optical Design (Oxford U. Press, New York, 1997).

Maeda, T.

Maniloff, E. S.

Marchant, A. B.

A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990).

McDonald, M.

M. A. Neifeld, M. McDonald, “Lens-design issues affecting parallel readout of optical disks,” Appl. Opt. 34, 5167–5174 (1995).
[CrossRef] [PubMed]

M. McDonald, R. McLeod, “Focus error signal generation using a birefringent lens with confocal detection,” U.S. Patent6,269,057 (31July2001).

McDonald, M. E.

A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,147,782 (14November2000).

M. E. McDonald, Y. C. Lee, “Spherical aberration correction using flying lens and method,” U.S. Patent6,064,529 (16May2000).

M. E. McDonald, A. J. Daiber, “Method and apparatus for adjustable spherical aberration correction and focusing,” U.S. Patent6,091,549 (18July2000).

A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,288,804 (11September2001).

McLeod, R.

M. McDonald, R. McLeod, “Focus error signal generation using a birefringent lens with confocal detection,” U.S. Patent6,269,057 (31July2001).

A. Daiber, R. McLeod, R. Snyder, “Sparse modulation codes for holographic data storage,” U.S. Patent6,549,664 (15April2003).

Minns, R. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Mizukami, M.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Mok, F. H.

Mouroulis, P.

P. Mouroulis, J. Macdonald, Geometrical Optics and Optical Design (Oxford U. Press, New York, 1997).

Murata, S.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Neifeld, M. A.

Odian, G.

G. Odian, Principles of Polymerization (McGraw-Hill, New York, 1970).

Orlic, S.

S. Orlic, S. Ulm, H. Ju. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt, “High-density disk storage by multiplexed microholograms,” in IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

Orlov, S. S.

S. S. Orlov, “Volume holographic data storage,” Commun. ACM 23, 47–54 (2000).

Parthenopoulos, D. A.

Pike, R.

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

Pontius, D. H.

D. H. Pontius, “Confocal optical microscopy system for multilevel data storage and retrieval,” U.S. Patent5,619,371, (8April1997).

Psaltis, D.

Z. Liu, G. J. Steckman, D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

X. An, D. Psaltis, G. W. Burr, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999).
[CrossRef]

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

Rentzepis, P. M.

Richter, H.

Rosen, H. J.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, T. C. Strand, “Multilevel volumetric optical disk storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 247–250 (1994).
[CrossRef]

W. I. Imaino, H. J. Rosen, K. A. Rubin, T. C. Strand, M. E. Best, “Extending the compact disk format to high capacity for video applications,” in 1994 Topical Meetings on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 254–259 (1994).
[CrossRef]

Rubin, K. A.

W. I. Imaino, H. J. Rosen, K. A. Rubin, T. C. Strand, M. E. Best, “Extending the compact disk format to high capacity for video applications,” in 1994 Topical Meetings on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 254–259 (1994).
[CrossRef]

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, T. C. Strand, “Multilevel volumetric optical disk storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 247–250 (1994).
[CrossRef]

Sato, I.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Schild, H. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Schilling, F. C.

Schilling, M. L.

Schnoes, M. G.

Sheridan, J. T.

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

Snyder, R.

A. Daiber, R. McLeod, R. Snyder, “Sparse modulation codes for holographic data storage,” U.S. Patent6,549,664 (15April2003).

Somalingam, S.

Stankovic, S.

Steckman, G. J.

Z. Liu, G. J. Steckman, D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

Strand, T. C.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, T. C. Strand, “Multilevel volumetric optical disk storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 247–250 (1994).
[CrossRef]

W. I. Imaino, H. J. Rosen, K. A. Rubin, T. C. Strand, M. E. Best, “Extending the compact disk format to high capacity for video applications,” in 1994 Topical Meetings on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 254–259 (1994).
[CrossRef]

Strasser, A. C.

Tanabe, T.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Tanaka, T.

Tanaka, Y.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Tang, W. W.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, T. C. Strand, “Multilevel volumetric optical disk storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 247–250 (1994).
[CrossRef]

Toriumi, A.

Tschudi, T.

Ulm, S.

S. Orlic, S. Ulm, H. Ju. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

van Heerden, P. J.

Waldman, D. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Wang, M. M.

Wappelt, A.

H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt, “High-density disk storage by multiplexed microholograms,” in IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

Willner, A. E.

S. Homan, A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron Lett. 31, 621–623 (1995).
[CrossRef]

Wilson, T.

Yamazaki, H.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Yashizawa, T.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Appl. Opt. (10)

P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393–400 (1963).
[CrossRef]

S. Hunter, F. Kiamilev, S. C. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
[CrossRef] [PubMed]

M. M. Wang, S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39, 1826–1834 (2000).
[CrossRef]

Y. Kawata, T. Tanaka, S. Kawata, R. Juskaitis, T. Wilson, “Differential phase-contrast microscope with a split detector for the readout system of a multilayered optical memory,” Appl. Opt. 35, 2466–2470 (1996).
[CrossRef] [PubMed]

S. Somalingam, K. Dressbach, M. Hain, S. Stankovic, T. Tschudi, J. Knittel, H. Richter, “Effective spherical aberration compensation by use of a nematic liquid-crystal device,” Appl. Opt. 43, 2722–2729 (2004).
[CrossRef] [PubMed]

W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
[CrossRef] [PubMed]

B. M. King, M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681–6688 (2000).
[CrossRef]

X. An, D. Psaltis, G. W. Burr, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999).
[CrossRef]

M. A. Neifeld, M. McDonald, “Lens-design issues affecting parallel readout of optical disks,” Appl. Opt. 34, 5167–5174 (1995).
[CrossRef] [PubMed]

T. Maeda, H. Koyanagi, “Semiconfocal optical disk readout with one linear-spread beam,” Appl. Opt. 37, 8167–8172 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Liu, G. J. Steckman, D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Commun. ACM (1)

S. S. Orlov, “Volume holographic data storage,” Commun. ACM 23, 47–54 (2000).

Electron Lett. (1)

S. Homan, A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron Lett. 31, 621–623 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt, “High-density disk storage by multiplexed microholograms,” in IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

J. Opt. A (2)

S. Orlic, S. Ulm, H. Ju. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (1)

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994).
[CrossRef]

Opt. Lett. (5)

SPIE 35th Annual Conference Proceedings on Decision and Control (1)

R. Hazel, E. LaBudde, “Preformating method for random recording and playback of an optical memory disk,” SPIE 35th Annual Conference Proceedings on Decision and Control, B7 (1982).

Other (16)

G. Odian, Principles of Polymerization (McGraw-Hill, New York, 1970).

M. E. McDonald, Y. C. Lee, “Spherical aberration correction using flying lens and method,” U.S. Patent6,064,529 (16May2000).

M. E. McDonald, A. J. Daiber, “Method and apparatus for adjustable spherical aberration correction and focusing,” U.S. Patent6,091,549 (18July2000).

A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,288,804 (11September2001).

A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,147,782 (14November2000).

M. McDonald, R. McLeod, “Focus error signal generation using a birefringent lens with confocal detection,” U.S. Patent6,269,057 (31July2001).

A. Daiber, R. McLeod, R. Snyder, “Sparse modulation codes for holographic data storage,” U.S. Patent6,549,664 (15April2003).

W. I. Imaino, H. J. Rosen, K. A. Rubin, T. C. Strand, M. E. Best, “Extending the compact disk format to high capacity for video applications,” in 1994 Topical Meetings on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 254–259 (1994).
[CrossRef]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

J. F. Heanue, “Volume holographic storage of digital data implemented in photorefractive media,” Ph.D. Dissertation (Stanford University, Stanford, California, 1995).

A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990).

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, T. C. Strand, “Multilevel volumetric optical disk storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 247–250 (1994).
[CrossRef]

D. H. Pontius, “Confocal optical microscopy system for multilevel data storage and retrieval,” U.S. Patent5,619,371, (8April1997).

See, for example, http://www.inphase-tech.com/products/tapestrymedia/index.html .

P. Mouroulis, J. Macdonald, Geometrical Optics and Optical Design (Oxford U. Press, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layout of the microholographic disk drive. The inset shows the interference pattern formed by the two counterpropagating writing beams, which is then recorded as an index grating by the holographic photopolymer. Note how the reflection optics passively align the counterpropagating beam, even when there is significant transverse displacement between the upper and the lower heads.

Fig. 2
Fig. 2

Two-dimensional sampled-servo tracking scheme. Bits are sequentially displaced from the track in each cardinal direction, and their relative readout efficiency is compared to compute the radial and depth tracking error. The bits are rendered as isosurfaces at 50% of the peak index change [described by relation (6)], for the conditions of the second experiment (λ = 0.532 nm and 0.55 NA). Note that the index perturbations are well separated by the 1-µm spacing.

Fig. 3
Fig. 3

Geometry used to derive exposure schedule of bit-based holographic storage. The incident Gaussian is focused on a plane z = zf and sequentially exposes all cells in that plane. The power that passes through a cell at (x, y, z) = 0 is found to be equal to the total power in the incident beam.

Fig. 4
Fig. 4

Normalized detected intensity from a single microhologram (lower curve) and two microholograms displaced by 101/2 w0 (upper curve) as a function of read-head transverse displacement δx.

Fig. 5
Fig. 5

High-resolution confocal scanning readout of three layers of the five-layer experiment. Each storage layer was finely scanned to reveal the along- and cross-track bit shape. The weak streaks visible along track are out-of-focus cross talk from the neighboring layer.

Fig. 6
Fig. 6

Voltage read from layer 5 (the lowest layer), showing high SNR recovery of the data. Reading from the lowest layer is the worst case for interlayer cross talk and phase aberrations caused by intermediate layers.

Fig. 7
Fig. 7

Digitized voltages read from layers 3, 4, and 5 of a fully filled volume of 12 layers. Random repeating byte patterns were written to each layer, in this case 10001000, 11001010, and 11101011 on layers 3, 4, and 5, respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

D p = M p N ( 2 λ 0 f / p ) 2 = M p [ λ 0 f / ( p N / 2 ) ] 2 = ( NA p λ 0 ) 2 M p ,
η p = 1 N ( π L Δ n λ 0 M p ) 2 = 1 N ( M # M p ) 2 ,
R p read N Δ t p = N η p P E p = ( M # M p ) 2 P p E p ,
Δ n M p = S P p Δ t p write ( 2 λ 0 f / p ) 2 .
R p write = D p S Δ n P p .
P Exposure ( i = 0 , j = 0 , z = 0 ) = i j δ x / 2 δ x / 2 δ y / 2 δ y / 2 × I ( x i δ x , y i δ y , 0 ) d x d y = I ( x , y , 0 ) d x d y P Total .
P Total δ x / 2 δ x / 2 δ y / 2 δ y / 2 I ( x , y , z ) d x d y = P Exposure ( i = 0 , j = 0 , z = 0 ) ,
δ n ( ρ , z ) = δ n ( w 0 w ( z ) ) 2 exp [ 2 ( ρ w ( z ) ) 2 ] [ 1 + cos ( 2 k z ) 2 ] ,
η b ( δ x , δ z ) = [ π δ n λ 0 ( w 0 w ( z ) ) 2 exp [ 2 x 2 + y 2 w 2 ( z ) ] ( w 0 w ( z + δ z ) ) 2 exp [ 2 ( x + δ x ) 2 + y 2 w 2 ( z + δ z ) ] d x d y d z 2 π exp 2 ( ρ w 0 ) 2 ρ d ρ ] 2 [ I W I R I W , I R ] 2 ,
η b ( 0 , δ z ) = ( π 2 z 0 L ) 2 ( M # M b ) 2 1 + ( δ z 2 z 0 ) 2 , η b ( δ x , 0 ) = ( π 2 z 0 L ) 2 ( M # M b ) 2 { exp [ ( δ x / w 0 ) 2 z 2 + 1 ] π ( z 2 + 1 ) d z } 2 ,
D b = M b ( 10 λ 0 / π N A b ) 2 ( N A b λ 0 ) 2 M b ,
R b read = ( π 2 z 0 L ) 2 ( M # M b ) 2 P b E b .
R b write = S ( N A b λ 0 ) 2 P b δ n = S D b P b M b δ n = D b S Δ n P b .

Metrics