Abstract

A single-shot optical pump-and-probe test system is reported. The system is designed for thermal characterization of thin-film samples that can change their phase state under the influence of a short and intense laser pulse on a subnanosecond time scale. In combination with numerical analysis, the system can be used to estimate thermal constants of thin films, such as specific heat and thermal conductivity. In-plane and out-of plane thermal conductivity can be estimated independently. The system is intended for use in research on optical data storage and material processing with pulsed laser light. The system design issues are discussed. As application examples, we report on using the system to study thermal dynamics in two different thin-film samples: a gold film on a glass substrate (a single-phase system) and the quadrilayer phase-change stack typical in optical data-storage applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, S. Chu, J. Ho, C. Grigoropoulos, “Excimer laser ablation of thin gold films on a quartz crystal microbalance at various background pressures,” Appl. Phys. A 64, 545–552 (1997).
    [CrossRef]
  2. A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990).
  3. T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
    [CrossRef]
  4. M. Zavrtanik, J. Demsar, B. Podobnik, D. Mihalovic, J. Evetts, “Analysis of the photoresponse of Y-Ba-Cu-O thin films on ps to µs timescales,” in Applied Spectroscopy 1997: Proceedings of EUCAS 1977, The Third European Conference on Applied Superconductivity, Vol. 1 of Institute of Physics Conference Series, H. Rogalla, D. H. A. Blank, eds. (Institute of Physics, London, 1997), pp. 149–156.
  5. N. Taketoshi, T. Baba, A. Ono, “Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique,” Jpn. J. Appl. Phys. 38, L1268–L1271 (1999).
    [CrossRef]
  6. W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
    [CrossRef]
  7. G. Langer, J. Hartmann, M. Reichling, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Rev. Sci. Instrum. 68, 1510–1513 (1997).
    [CrossRef]
  8. D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001).
    [CrossRef]
  9. C. Paddock, G. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1987).
    [CrossRef]
  10. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
    [CrossRef] [PubMed]
  11. D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
    [CrossRef] [PubMed]
  12. Y. Hitoki, M. Hidetoshi, U. Ken-ichi, R. Moore, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 1–4 (2003).
  13. T. Yamane, S. Katayama, M. Todoki, “Analysis of ac temperature wave during the measurement of thermal diffusivity of two-layered platelike samples,” J. Appl. Phys. 80, 2019–2026 (1996).
    [CrossRef]
  14. G. Chen, P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
    [CrossRef]
  15. G. Palasantzas, J. De Hosson, “Mound surface roughness effects on the thermal capacitance of thin films,” J. Appl. Phys. 89, 6130–6134 (2001).
    [CrossRef]
  16. J. Batista, D. Takeuti, A. Mansanares, E. da Silva, “Contrast and sensitivity enhancement in photothermal reflectance microscopy through the use of specific probing wavelengths: applications to microelectronics,” Anal. Sci. 17, S73–S75 (2001).
  17. M. Mansuripur, G. Connell, J. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]
  18. K. Watabe, P. Polynkin, M. Mansuripur, “Behavior of GeSbTeBi phase-change optical recording media under sub-nanosecond pulsed laser irradiation,” Appl. Opt. 43, 4033–4040 (2003).
    [CrossRef]

2003 (2)

Y. Hitoki, M. Hidetoshi, U. Ken-ichi, R. Moore, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 1–4 (2003).

K. Watabe, P. Polynkin, M. Mansuripur, “Behavior of GeSbTeBi phase-change optical recording media under sub-nanosecond pulsed laser irradiation,” Appl. Opt. 43, 4033–4040 (2003).
[CrossRef]

2001 (3)

G. Palasantzas, J. De Hosson, “Mound surface roughness effects on the thermal capacitance of thin films,” J. Appl. Phys. 89, 6130–6134 (2001).
[CrossRef]

J. Batista, D. Takeuti, A. Mansanares, E. da Silva, “Contrast and sensitivity enhancement in photothermal reflectance microscopy through the use of specific probing wavelengths: applications to microelectronics,” Anal. Sci. 17, S73–S75 (2001).

D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001).
[CrossRef]

1999 (4)

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

N. Taketoshi, T. Baba, A. Ono, “Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique,” Jpn. J. Appl. Phys. 38, L1268–L1271 (1999).
[CrossRef]

W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

G. Chen, P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
[CrossRef]

1997 (2)

G. Langer, J. Hartmann, M. Reichling, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Rev. Sci. Instrum. 68, 1510–1513 (1997).
[CrossRef]

X. Zhang, S. Chu, J. Ho, C. Grigoropoulos, “Excimer laser ablation of thin gold films on a quartz crystal microbalance at various background pressures,” Appl. Phys. A 64, 545–552 (1997).
[CrossRef]

1996 (2)

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

T. Yamane, S. Katayama, M. Todoki, “Analysis of ac temperature wave during the measurement of thermal diffusivity of two-layered platelike samples,” J. Appl. Phys. 80, 2019–2026 (1996).
[CrossRef]

1995 (1)

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

1987 (1)

C. Paddock, G. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1987).
[CrossRef]

1982 (1)

Baba, T.

N. Taketoshi, T. Baba, A. Ono, “Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique,” Jpn. J. Appl. Phys. 38, L1268–L1271 (1999).
[CrossRef]

Babin, S.

D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001).
[CrossRef]

Barty, C. P. J.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Batista, J.

J. Batista, D. Takeuti, A. Mansanares, E. da Silva, “Contrast and sensitivity enhancement in photothermal reflectance microscopy through the use of specific probing wavelengths: applications to microelectronics,” Anal. Sci. 17, S73–S75 (2001).

Capinski, W.

W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Cardona, M.

W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Cavalleri, A.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Chen, G.

G. Chen, P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
[CrossRef]

Choudhary, A. J. S.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Chu, D.

D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001).
[CrossRef]

Chu, S.

X. Zhang, S. Chu, J. Ho, C. Grigoropoulos, “Excimer laser ablation of thin gold films on a quartz crystal microbalance at various background pressures,” Appl. Phys. A 64, 545–552 (1997).
[CrossRef]

Connell, G.

da Silva, E.

J. Batista, D. Takeuti, A. Mansanares, E. da Silva, “Contrast and sensitivity enhancement in photothermal reflectance microscopy through the use of specific probing wavelengths: applications to microelectronics,” Anal. Sci. 17, S73–S75 (2001).

De Hosson, J.

G. Palasantzas, J. De Hosson, “Mound surface roughness effects on the thermal capacitance of thin films,” J. Appl. Phys. 89, 6130–6134 (2001).
[CrossRef]

Demsar, J.

M. Zavrtanik, J. Demsar, B. Podobnik, D. Mihalovic, J. Evetts, “Analysis of the photoresponse of Y-Ba-Cu-O thin films on ps to µs timescales,” in Applied Spectroscopy 1997: Proceedings of EUCAS 1977, The Third European Conference on Applied Superconductivity, Vol. 1 of Institute of Physics Conference Series, H. Rogalla, D. H. A. Blank, eds. (Institute of Physics, London, 1997), pp. 149–156.

Eesley, G.

C. Paddock, G. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1987).
[CrossRef]

Evetts, J.

M. Zavrtanik, J. Demsar, B. Podobnik, D. Mihalovic, J. Evetts, “Analysis of the photoresponse of Y-Ba-Cu-O thin films on ps to µs timescales,” in Applied Spectroscopy 1997: Proceedings of EUCAS 1977, The Third European Conference on Applied Superconductivity, Vol. 1 of Institute of Physics Conference Series, H. Rogalla, D. H. A. Blank, eds. (Institute of Physics, London, 1997), pp. 149–156.

Evetts, J. E.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Fabian Pease, R.

D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001).
[CrossRef]

Forro, L.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Goodman, J.

Goodson, E.

D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001).
[CrossRef]

Grigoropoulos, C.

X. Zhang, S. Chu, J. Ho, C. Grigoropoulos, “Excimer laser ablation of thin gold films on a quartz crystal microbalance at various background pressures,” Appl. Phys. A 64, 545–552 (1997).
[CrossRef]

Guethlein, G.

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

Guo, T.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Hartmann, J.

G. Langer, J. Hartmann, M. Reichling, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Rev. Sci. Instrum. 68, 1510–1513 (1997).
[CrossRef]

Hidetoshi, M.

Y. Hitoki, M. Hidetoshi, U. Ken-ichi, R. Moore, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 1–4 (2003).

Hitoki, Y.

Y. Hitoki, M. Hidetoshi, U. Ken-ichi, R. Moore, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 1–4 (2003).

Ho, J.

X. Zhang, S. Chu, J. Ho, C. Grigoropoulos, “Excimer laser ablation of thin gold films on a quartz crystal microbalance at various background pressures,” Appl. Phys. A 64, 545–552 (1997).
[CrossRef]

Horn von Hoegen, M.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Hui, P.

G. Chen, P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
[CrossRef]

Kammler, M.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Katayama, S.

T. Yamane, S. Katayama, M. Todoki, “Analysis of ac temperature wave during the measurement of thermal diffusivity of two-layered platelike samples,” J. Appl. Phys. 80, 2019–2026 (1996).
[CrossRef]

Katzer, D.

W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Ken-ichi, U.

Y. Hitoki, M. Hidetoshi, U. Ken-ichi, R. Moore, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 1–4 (2003).

Langer, G.

G. Langer, J. Hartmann, M. Reichling, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Rev. Sci. Instrum. 68, 1510–1513 (1997).
[CrossRef]

Mansanares, A.

J. Batista, D. Takeuti, A. Mansanares, E. da Silva, “Contrast and sensitivity enhancement in photothermal reflectance microscopy through the use of specific probing wavelengths: applications to microelectronics,” Anal. Sci. 17, S73–S75 (2001).

Mansuripur, M.

Marchant, A. B.

A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990).

Maris, H.

W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Mertelj, T.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Mihailovic, D.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Mihalovic, D.

M. Zavrtanik, J. Demsar, B. Podobnik, D. Mihalovic, J. Evetts, “Analysis of the photoresponse of Y-Ba-Cu-O thin films on ps to µs timescales,” in Applied Spectroscopy 1997: Proceedings of EUCAS 1977, The Third European Conference on Applied Superconductivity, Vol. 1 of Institute of Physics Conference Series, H. Rogalla, D. H. A. Blank, eds. (Institute of Physics, London, 1997), pp. 149–156.

Moore, R.

Y. Hitoki, M. Hidetoshi, U. Ken-ichi, R. Moore, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 1–4 (2003).

More, R.

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

Ono, A.

N. Taketoshi, T. Baba, A. Ono, “Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique,” Jpn. J. Appl. Phys. 38, L1268–L1271 (1999).
[CrossRef]

Paddock, C.

C. Paddock, G. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1987).
[CrossRef]

Palasantzas, G.

G. Palasantzas, J. De Hosson, “Mound surface roughness effects on the thermal capacitance of thin films,” J. Appl. Phys. 89, 6130–6134 (2001).
[CrossRef]

Ploog, K.

W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Podobnik, B.

M. Zavrtanik, J. Demsar, B. Podobnik, D. Mihalovic, J. Evetts, “Analysis of the photoresponse of Y-Ba-Cu-O thin films on ps to µs timescales,” in Applied Spectroscopy 1997: Proceedings of EUCAS 1977, The Third European Conference on Applied Superconductivity, Vol. 1 of Institute of Physics Conference Series, H. Rogalla, D. H. A. Blank, eds. (Institute of Physics, London, 1997), pp. 149–156.

Polynkin, P.

Price, D.

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

Reichling, M.

G. Langer, J. Hartmann, M. Reichling, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Rev. Sci. Instrum. 68, 1510–1513 (1997).
[CrossRef]

Ruf, T.

W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Ryan, J. F.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Shepherd, R.

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

Siders, C. W.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Sokolowski-Tinten, K.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Stevens, C. J.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Stewart, R.

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

Taketoshi, N.

N. Taketoshi, T. Baba, A. Ono, “Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique,” Jpn. J. Appl. Phys. 38, L1268–L1271 (1999).
[CrossRef]

Takeuti, D.

J. Batista, D. Takeuti, A. Mansanares, E. da Silva, “Contrast and sensitivity enhancement in photothermal reflectance microscopy through the use of specific probing wavelengths: applications to microelectronics,” Anal. Sci. 17, S73–S75 (2001).

Thomas, T. N.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Todoki, M.

T. Yamane, S. Katayama, M. Todoki, “Analysis of ac temperature wave during the measurement of thermal diffusivity of two-layered platelike samples,” J. Appl. Phys. 80, 2019–2026 (1996).
[CrossRef]

Toth, Cs.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Touzelbaev, M.

D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001).
[CrossRef]

von der Linde, D.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Wagner, G.

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Walling, R.

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

Watabe, K.

White, W.

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

Wilson, K. R.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Yamane, T.

T. Yamane, S. Katayama, M. Todoki, “Analysis of ac temperature wave during the measurement of thermal diffusivity of two-layered platelike samples,” J. Appl. Phys. 80, 2019–2026 (1996).
[CrossRef]

Zavrtanik, M.

M. Zavrtanik, J. Demsar, B. Podobnik, D. Mihalovic, J. Evetts, “Analysis of the photoresponse of Y-Ba-Cu-O thin films on ps to µs timescales,” in Applied Spectroscopy 1997: Proceedings of EUCAS 1977, The Third European Conference on Applied Superconductivity, Vol. 1 of Institute of Physics Conference Series, H. Rogalla, D. H. A. Blank, eds. (Institute of Physics, London, 1997), pp. 149–156.

Zhang, X.

X. Zhang, S. Chu, J. Ho, C. Grigoropoulos, “Excimer laser ablation of thin gold films on a quartz crystal microbalance at various background pressures,” Appl. Phys. A 64, 545–552 (1997).
[CrossRef]

Anal. Sci. (1)

J. Batista, D. Takeuti, A. Mansanares, E. da Silva, “Contrast and sensitivity enhancement in photothermal reflectance microscopy through the use of specific probing wavelengths: applications to microelectronics,” Anal. Sci. 17, S73–S75 (2001).

Appl. Opt. (2)

Appl. Phys. A (1)

X. Zhang, S. Chu, J. Ho, C. Grigoropoulos, “Excimer laser ablation of thin gold films on a quartz crystal microbalance at various background pressures,” Appl. Phys. A 64, 545–552 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

G. Chen, P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
[CrossRef]

J. Appl. Phys. (3)

G. Palasantzas, J. De Hosson, “Mound surface roughness effects on the thermal capacitance of thin films,” J. Appl. Phys. 89, 6130–6134 (2001).
[CrossRef]

C. Paddock, G. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1987).
[CrossRef]

T. Yamane, S. Katayama, M. Todoki, “Analysis of ac temperature wave during the measurement of thermal diffusivity of two-layered platelike samples,” J. Appl. Phys. 80, 2019–2026 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Taketoshi, T. Baba, A. Ono, “Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique,” Jpn. J. Appl. Phys. 38, L1268–L1271 (1999).
[CrossRef]

Phys. Rev. B (2)

W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995).
[CrossRef] [PubMed]

Y. Hitoki, M. Hidetoshi, U. Ken-ichi, R. Moore, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 1–4 (2003).

Rev. Sci. Instrum. (1)

G. Langer, J. Hartmann, M. Reichling, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Rev. Sci. Instrum. 68, 1510–1513 (1997).
[CrossRef]

Science (1)

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999).
[CrossRef] [PubMed]

Vac. Sci. Technol. B (1)

D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001).
[CrossRef]

Other (2)

M. Zavrtanik, J. Demsar, B. Podobnik, D. Mihalovic, J. Evetts, “Analysis of the photoresponse of Y-Ba-Cu-O thin films on ps to µs timescales,” in Applied Spectroscopy 1997: Proceedings of EUCAS 1977, The Third European Conference on Applied Superconductivity, Vol. 1 of Institute of Physics Conference Series, H. Rogalla, D. H. A. Blank, eds. (Institute of Physics, London, 1997), pp. 149–156.

A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the pump-and-probe test system. PM SM, polarization-maintaining single-mode; AOM, acousto-optic modulator.

Fig. 2
Fig. 2

Autocorrelation function of the laser pulse with and without spatial filtering with a single-mode optical fiber (SMF). Circles represent data points; curves are drawn to fit the data.

Fig. 3
Fig. 3

Scaled temperature of the sample for three different sizes of the focused spot. Experimental data are shown with symbols; the curves represent results of thermal modeling. The parameters used in the calculations are listed in Table 1.

Fig. 4
Fig. 4

Curves represent scaled temperature of the sample calculated with bulk values for all parameters of the sample for three different values of the focused spot size. Symbols represent the same experimental data as shown in Fig. 3.

Fig. 5
Fig. 5

Maximum absolute reflectivity drop versus total energy of the pump pulse for three different values of the focused spot size of the pump beam. The curves corresponding to the spot sizes of 0.9 and 1.8 µm are terminated at the pulse energy that causes permanent reflectivity change of the sample (burnout). According to the numerical modeling, at a slightly lower pulse energy the sample reaches the melting temperature of bulk gold in the middle of the focused spot. The curve corresponding to the spot size of 3.4 µm is terminated at the maximum pump energy available in the system; in other words, damage threshold was not reached in this case because the available pulse energy was not sufficient. The curves represent a linear fit to the experimental data points.

Fig. 6
Fig. 6

Structure of the quadrilayer phase-change sample used in the experiment.

Fig. 7
Fig. 7

Reflectivity variation during amorphization of the crystalline state of a GSTB film. Each curve corresponds to a specific value of the optical pulse energy. The rightmost data point in each curve represents the final reflectivity of the recorded mark (taken several minutes after the exposure).

Tables (1)

Tables Icon

Table 1 Material Constants Used in the Numerical Simulationsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( δ signal ) / signal 2 ( ξ pump probe ) 1 / 2 γ ( T ) = 2 ( ξ pump probe ) 1 / 2 exp [ ( T / τ ) 2 ] ,

Metrics