Abstract

We describe an autodyne lidar with multiple external mirrors by using an analytical approach presented previously [ Appl. Opt. 41, 7087 ( 2002)]. The use of multiple target mirrors allows one to detect and locate the concentration of species between any pair of neighboring mirrors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).
  2. T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
    [CrossRef]
  3. J. H. Churnside, “Signal-to-noise in a backscatter-modulated Doppler velocimeter,” Appl. Opt. 23, 2097–2106 (1984).
    [CrossRef] [PubMed]
  4. J. H. Churnside, “Laser Doppler velocimetry by modulating a CO2laser with backscattered light,” Appl. Opt. 23, 61–66 (1984).
    [CrossRef]
  5. M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
    [CrossRef] [PubMed]
  6. A. P. Godlevsky, E. P. Gordov, Ya. Ya. Ponurovskii, A. Z. Fazliev, “Parametric laser-reception lidar,” Appl. Opt. 26, 1607–1611 (1987).
    [CrossRef] [PubMed]
  7. E. P. Gordov, “Autodyne lidars of the second generation,” Atmos. Ocean. Opt. 8, 137–144 (1995).
  8. E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Ocean. Opt. 7, 63–64 (1994).
  9. E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multipurpose cw CO2autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).
  10. E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).
    [CrossRef]
  11. E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2autodyne lidar for hydrocarbon sources assessment,” in Proceedings of International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.
  12. G. A. Koganov, R. Shuker, E. P. Gordov, “Analytical estimation of the parameters of autodyne lidar,” Appl. Opt. 41, 7087–7091 (2002).
    [CrossRef] [PubMed]
  13. A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).
  14. G. A. Koganov, R. Shuker, E. P. Gordov, M. M. Makogon, H. Rutt, “Autodyne lidar for environmental DIAL applications,” presented at the International Conference and Young Scientists School on Computational Information Technologies for Environmental Sciences, CITES-2003, Tomsk, Russia, 1–10 September 2003.

2002 (1)

1995 (1)

E. P. Gordov, “Autodyne lidars of the second generation,” Atmos. Ocean. Opt. 8, 137–144 (1995).

1994 (1)

E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Ocean. Opt. 7, 63–64 (1994).

1991 (1)

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

1989 (1)

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

1987 (1)

1984 (2)

1972 (1)

T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
[CrossRef]

1963 (1)

P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).

Churnside, J. H.

Craven, C. E.

T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
[CrossRef]

Fazliev, A. Z.

A. P. Godlevsky, E. P. Gordov, Ya. Ya. Ponurovskii, A. Z. Fazliev, “Parametric laser-reception lidar,” Appl. Opt. 26, 1607–1611 (1987).
[CrossRef] [PubMed]

E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multipurpose cw CO2autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).
[CrossRef]

Godlevsky, A. P.

Gordov, E. P.

G. A. Koganov, R. Shuker, E. P. Gordov, “Analytical estimation of the parameters of autodyne lidar,” Appl. Opt. 41, 7087–7091 (2002).
[CrossRef] [PubMed]

E. P. Gordov, “Autodyne lidars of the second generation,” Atmos. Ocean. Opt. 8, 137–144 (1995).

E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Ocean. Opt. 7, 63–64 (1994).

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

A. P. Godlevsky, E. P. Gordov, Ya. Ya. Ponurovskii, A. Z. Fazliev, “Parametric laser-reception lidar,” Appl. Opt. 26, 1607–1611 (1987).
[CrossRef] [PubMed]

G. A. Koganov, R. Shuker, E. P. Gordov, M. M. Makogon, H. Rutt, “Autodyne lidar for environmental DIAL applications,” presented at the International Conference and Young Scientists School on Computational Information Technologies for Environmental Sciences, CITES-2003, Tomsk, Russia, 1–10 September 2003.

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).
[CrossRef]

E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2autodyne lidar for hydrocarbon sources assessment,” in Proceedings of International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.

E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multipurpose cw CO2autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).

Harris, M.

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Huffaker, R. M.

T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
[CrossRef]

Jones, J.

T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
[CrossRef]

Khazanov, A. M.

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

Khmel’nitskii, G. S.

E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Ocean. Opt. 7, 63–64 (1994).

Khmelnitskii, G. S.

E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multipurpose cw CO2autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).

King, P. G. R.

P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).

Koganov, G. A.

G. A. Koganov, R. Shuker, E. P. Gordov, “Analytical estimation of the parameters of autodyne lidar,” Appl. Opt. 41, 7087–7091 (2002).
[CrossRef] [PubMed]

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

G. A. Koganov, R. Shuker, E. P. Gordov, M. M. Makogon, H. Rutt, “Autodyne lidar for environmental DIAL applications,” presented at the International Conference and Young Scientists School on Computational Information Technologies for Environmental Sciences, CITES-2003, Tomsk, Russia, 1–10 September 2003.

E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2autodyne lidar for hydrocarbon sources assessment,” in Proceedings of International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.

Lawrence, T. R.

T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
[CrossRef]

Loudon, R.

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Makogon, M. M.

G. A. Koganov, R. Shuker, E. P. Gordov, M. M. Makogon, H. Rutt, “Autodyne lidar for environmental DIAL applications,” presented at the International Conference and Young Scientists School on Computational Information Technologies for Environmental Sciences, CITES-2003, Tomsk, Russia, 1–10 September 2003.

E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2autodyne lidar for hydrocarbon sources assessment,” in Proceedings of International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).
[CrossRef]

Mander, G. L.

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Orlovskii, V. M.

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).
[CrossRef]

Ponurovskii, Ya. Ya.

Rutt, H.

G. A. Koganov, R. Shuker, E. P. Gordov, M. M. Makogon, H. Rutt, “Autodyne lidar for environmental DIAL applications,” presented at the International Conference and Young Scientists School on Computational Information Technologies for Environmental Sciences, CITES-2003, Tomsk, Russia, 1–10 September 2003.

Shuker, R.

G. A. Koganov, R. Shuker, E. P. Gordov, “Analytical estimation of the parameters of autodyne lidar,” Appl. Opt. 41, 7087–7091 (2002).
[CrossRef] [PubMed]

G. A. Koganov, R. Shuker, E. P. Gordov, M. M. Makogon, H. Rutt, “Autodyne lidar for environmental DIAL applications,” presented at the International Conference and Young Scientists School on Computational Information Technologies for Environmental Sciences, CITES-2003, Tomsk, Russia, 1–10 September 2003.

Steward, G. J.

P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).

Thomson, J. A. L.

T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
[CrossRef]

Vaughan, J. M.

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Wilson, D. J.

T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
[CrossRef]

Appl. Opt. (4)

Atmos. Ocean. Opt. (2)

E. P. Gordov, “Autodyne lidars of the second generation,” Atmos. Ocean. Opt. 8, 137–144 (1995).

E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Ocean. Opt. 7, 63–64 (1994).

Atmos. Opt. (1)

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

New Sci. (1)

P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).

Phys. Rev. Lett. (1)

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

T. R. Lawrence, D. J. Wilson, C. E. Craven, J. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972).
[CrossRef]

Other (4)

G. A. Koganov, R. Shuker, E. P. Gordov, M. M. Makogon, H. Rutt, “Autodyne lidar for environmental DIAL applications,” presented at the International Conference and Young Scientists School on Computational Information Technologies for Environmental Sciences, CITES-2003, Tomsk, Russia, 1–10 September 2003.

E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multipurpose cw CO2autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).
[CrossRef]

E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2autodyne lidar for hydrocarbon sources assessment,” in Proceedings of International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the mirrors of an autodyne lidar.

Fig. 2
Fig. 2

Intensity spectrum of a two-mirror Nd:YAG lidar. Parameters used in the calculations are a0 = 1 µm, λ = 1.064 µm, λ = 1 kHz, R2 = R3 = 0.05, and output laser power 100 mW.

Fig. 3
Fig. 3

Intensity spectrum of a four-mirror CO2 lidar. Parameters used in the calculations are a0 = 1 µm, λ = 10.6 µm, Ω = 1 kHz, output laser power 2 W, R2 = R3 = R4 = 0.05, and R5 = 1.

Fig. 4
Fig. 4

Intensity spectrum of a three-mirror CO2 lidar with mirror reflectivities adjusted to have equal signals from all three mirrors. R2 = 0.14, R3 = 0.26, R4 = 1.0, L2 = 50 m, L3 = 100 m, L4 = 150 m.

Fig. 5
Fig. 5

Intensity spectrum of a three-mirror CO2 lidar with a retroreflector used as a last mirror, while two other mirrors have small reflectivity. The signal from the last mirror has much higher intensity, allowing for detecting small variations in local gas concentration. R2 = 0.05, R3 = 0.075, R4 = 1.0, L2 = 50 m, L3 = 100 m, L4 = 150 m.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E ± ( z , t ) t ± c E ± ( z , t ) z + ω Q E ± ( z , t ) = ω 2 0 P ± ( z , t ) ,
i ± ( z , t ) t ± c i ± ( z , t ) z + σ c i ± ( z , t ) = 0 ,
E + ( l , t ) = R o E ( l , t ) ,
E ( a , t ) = R 1 E + ( a , t ) + T 1 1 ( a , t ) ,
1 + ( a , t ) = T 1 E + ( a , t ) ,
i ( L i , t ) = R i + 1 i + ( L i , t ) + T i + 1 i + 1 ( L i + 1 , t ) ,
i + 1 + ( L i + 1 , t ) = T i + 1 i + ( L i + 1 , t ) , i = 2 , 3 , , N .
1 κ + ( α + 1 ) x α R 0 y = ξ x 1 + δ 2 + x 2 [ 1 + γ ( t ) ] 2 ,
1 κ + ( α + 1 ) y α γ ( t ) x = ξ y 1 + δ 2 + y 2 ( 1 + R 1 ) 2 ,
α = c κ [ l + a ( t ) ] , ξ = N g 2 Δ 0 κ γ , = 4 g 2 γ γ , δ = c λ γ a ( t ) l , γ ( t ) = R 1 + i = 1 N R i + 1 × [ II j = 1 i T j 2 exp ( 2 σ j Δ L j ) ] cos ( Δ ω i t ) ,
Δ ω i = 8 Ω L i l a 0 λ .
i ( t ) + a 11 x i ( t ) + a 12 y i ( t ) = b 1 i exp ( 2 σ i Δ L i ) cos ( Δ ω i t ) ,
i ( t ) + a 21 x i ( t ) + a 22 y i ( t ) = b 2 i exp ( 2 σ i Δ L i ) cos ( Δ ω i t ) ,
x ( t ) = x 0 ( t ) + i = 2 N X i sin ( Δ ω i t + φ i ) ,
y ( t ) = y ( t ) 0 + i = 2 N Y i sin ( Δ ω i t + ψ i ) ,
X i = exp ( 4 σ i Δ L i ) { [ ( a 22 ) 2 ( b 1 i ) 2 2 a 12 a 22 b 1 i b 2 i + ( a 12 ) 2 ( b 2 i ) 2 ] κ 4 + ( b 1 i ) 2 ( Δ ω i ) 2 κ 2 } ( Δ ω i ) 4 + [ ( a 11 ) 2 + 2 a 12 a 21 + ( a 22 ) 2 ] ( Δ ω i ) 2 κ 2 + ( a 12 a 21 a 11 a 22 ) 2 κ 4 ,
Y i = exp ( 4 σ i Δ L i ) { [ ( a 21 ) 2 ( b 1 i ) 2 2 a 11 a 21 b 1 i b 2 i + ( b 2 i ) 2 ( a 11 ) 2 ] κ 4 + ( b 2 i ) 2 ( Δ ω i ) 2 κ 2 } ( Δ ω i ) 4 + [ ( a 11 ) 2 + 2 a 12 a 21 + ( a 22 ) 2 ] ( Δ ω i ) 2 κ 2 + ( a 12 a 21 a 11 a 22 ) 2 κ 4 .
σ i = 1 4 Δ L i log [ ( a 22 ) 2 ( b 1 i ) 2 2 a 12 a 22 b 1 i b 2 i + ( a 12 ) 2 ( b 2 i ) 2 ] κ 4 + ( b 1 i ) 2 ( Δ ω i ) 2 κ 2 X i { ( Δ ω i ) 4 + [ ( a 11 ) 2 + 2 a 12 a 21 + ( a 22 ) 2 ] ( Δ ω i ) 2 κ 2 + ( a 12 a 21 a 11 a 22 ) 2 κ 4 }
σ i = 1 4 Δ L i log [ ( a 21 ) 2 ( b 1 i ) 2 2 a 11 a 21 b 1 i b 2 i + ( b 2 i ) 2 ( a 11 ) 2 ] κ 4 + ( b 2 i ) 2 ( Δ ω i ) 2 κ 2 Y i { ( Δ ω i ) 4 + [ ( a 11 ) 2 + 2 a 12 a 21 + ( a 22 ) 2 ] ( Δ ω i ) 2 κ 2 + ( a 12 a 21 a 11 a 22 ) 2 κ 4 } .
a 11 = 1 + α ξ [ 1 + δ 2 ( 1 + R 1 ) 2 ( x 0 2 ] [ 1 + δ 2 + ( 1 + R 1 ) 2 x 0 2 ] 2 ,
a 12 = α R 1 ,
a 21 = α R 0 ,
a 22 = 1 + α ξ [ 1 + δ 2 ( 1 + R 1 ) 2 ( y 0 2 ] [ 1 + δ 2 + ( 1 + R 1 ) 2 y 0 2 ] 2 ;
b 1 i = 2 ξ ( 1 + R 1 ) R i + 1 T i 2 j = 1 i 1 [ T j 2 exp ( 2 σ j Δ L j ) ] x 0 3 [ 1 + δ 2 + ( 1 + R 0 ) 2 x 0 2 ] 2 ,
b 2 i = α R i + 1 T i 2 j = 1 i 1 [ T j 2 ) exp ( 2 σ j Δ L j ) ] x 0 , i = 2 , 3 , , N .

Metrics