Abstract

Recently, photonic crystal band-edge structures have been analyzed in the literature. However, most devices that have been presented so far emit light in different directions. We present a modal analysis (no gain included) of a few schemes to improve the directionality of these devices, i.e., in such a way that light that exits from them will travel mainly in a certain direction, eventually coupling its energy to a wide waveguide.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. T. Asano, M. Mochizuki, S. Noda, M. Okano, M. Imada, “A channel drop filter using a single defect in a 2-D photonic crystal slab: defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,” J. Lightwave Technol. 21, 1370–1376 (2003).
    [CrossRef]
  5. R. Costa, A. Melloni, M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
    [CrossRef]
  6. T. Matsumoto, T. Baba, “Photonic crystal k-vector superprism,” J. Lightwave Technol. 22, 917–922 (2004).
    [CrossRef]
  7. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162–165 (2001).
    [CrossRef]
  8. Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
    [CrossRef]
  9. J. Smajic, C. Hafner, D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Express 11, 1378–1384 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  11. P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002).
    [CrossRef]
  12. A. G. Smirnov, D. V. Ushakov, V. K. Konokenko, “Multiple-wavelength lasing in one-dimensional bandgap structures: implementation with active n–i–p–i layers,” J. Opt. Soc. Am. B 19, 2208–2214 (2002).
    [CrossRef]
  13. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
    [CrossRef]
  14. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
    [CrossRef]
  15. H. Y. Ryu, M. Notomi, G. H. Kim, Y. H. Lee, “High quality-factor whispering gallery mode in the photonic crystal hexagonal disk cavity,” Opt. Express 12, 1708–1719 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  16. K. Inoshita, T. Baba, “Lasing at bend, branch and intersection of photonic crystals,” Electron. Lett. 39, 844–846 (2003).
    [CrossRef]
  17. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
    [CrossRef]
  18. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
    [CrossRef]
  19. N. Yokouchi, A. J. Danner, K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
    [CrossRef]
  20. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799–1808 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  21. M. Yokohama, S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice,” IEEE J. Quantum Electron. 39, 1074–1080 (2003).
    [CrossRef]
  22. D. Ohnishi, T. Okano, M. Imada, S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562–1568 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  23. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
    [CrossRef]
  24. S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, “Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab,” Appl. Phys. Lett. 83, 3870–3872 (2002).
    [CrossRef]
  25. S. Y. Lin, J. G. Fleming, I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593–595 (2003).
    [CrossRef]
  26. J. S. Foresi, “Photonic bandgap microcavities in channel waveguides,” Nature 390, 143–145 (1997).
    [CrossRef]
  27. L. Florescu, K. Busch, S. John, “Semiclassical theory of lasing in photonic crystals,” J. Opt. Soc. Am. B 19, 2215–2223 (2002).
    [CrossRef]
  28. J. Topol’ancik, S. Pradhan, P.-C. Yu, S. Gosh, P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot laser source,” IEEE Photon. Technol. Lett. 16, 960–962 (2004).
    [CrossRef]
  29. S. G. Johnson, J. Joannopoulos, “Bloch-iterative frequency domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  30. B. Cagnac, J. P. Faroux, Lasers: Interaction Lumière-Atomes, 1st ed.(Editions CNRS, Paris, 2002).
  31. N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic crystal lasers,” J. Appl. Phys. 89, 815–823 (2001).
    [CrossRef]

2004 (4)

2003 (11)

S. Y. Lin, J. G. Fleming, I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593–595 (2003).
[CrossRef]

N. Yokouchi, A. J. Danner, K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[CrossRef]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799–1808 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Yokohama, S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice,” IEEE J. Quantum Electron. 39, 1074–1080 (2003).
[CrossRef]

K. Inoshita, T. Baba, “Lasing at bend, branch and intersection of photonic crystals,” Electron. Lett. 39, 844–846 (2003).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

J. Smajic, C. Hafner, D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Express 11, 1378–1384 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

T. Asano, M. Mochizuki, S. Noda, M. Okano, M. Imada, “A channel drop filter using a single defect in a 2-D photonic crystal slab: defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,” J. Lightwave Technol. 21, 1370–1376 (2003).
[CrossRef]

R. Costa, A. Melloni, M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

2002 (7)

P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002).
[CrossRef]

A. G. Smirnov, D. V. Ushakov, V. K. Konokenko, “Multiple-wavelength lasing in one-dimensional bandgap structures: implementation with active n–i–p–i layers,” J. Opt. Soc. Am. B 19, 2208–2214 (2002).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, “Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab,” Appl. Phys. Lett. 83, 3870–3872 (2002).
[CrossRef]

L. Florescu, K. Busch, S. John, “Semiclassical theory of lasing in photonic crystals,” J. Opt. Soc. Am. B 19, 2215–2223 (2002).
[CrossRef]

2001 (3)

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

J. S. Foresi, “Photonic bandgap microcavities in channel waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Asano, T.

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Baba, T.

T. Matsumoto, T. Baba, “Photonic crystal k-vector superprism,” J. Lightwave Technol. 22, 917–922 (2004).
[CrossRef]

K. Inoshita, T. Baba, “Lasing at bend, branch and intersection of photonic crystals,” Electron. Lett. 39, 844–846 (2003).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Bhattacharya, P.

J. Topol’ancik, S. Pradhan, P.-C. Yu, S. Gosh, P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot laser source,” IEEE Photon. Technol. Lett. 16, 960–962 (2004).
[CrossRef]

Busch, K.

Cagnac, B.

B. Cagnac, J. P. Faroux, Lasers: Interaction Lumière-Atomes, 1st ed.(Editions CNRS, Paris, 2002).

Cao, J. R.

P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002).
[CrossRef]

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Choi, S. J.

P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002).
[CrossRef]

Choquette, K. D.

N. Yokouchi, A. J. Danner, K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[CrossRef]

Costa, R.

R. Costa, A. Melloni, M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

Danner, A. J.

N. Yokouchi, A. J. Danner, K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

El-Kady, I.

S. Y. Lin, J. G. Fleming, I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593–595 (2003).
[CrossRef]

Erni, D.

Fan, S.

Faroux, J. P.

B. Cagnac, J. P. Faroux, Lasers: Interaction Lumière-Atomes, 1st ed.(Editions CNRS, Paris, 2002).

Fleming, J. G.

S. Y. Lin, J. G. Fleming, I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593–595 (2003).
[CrossRef]

Florescu, L.

Foresi, J. S.

J. S. Foresi, “Photonic bandgap microcavities in channel waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Gendry, M.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Gmachl, C.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Gosh, S.

J. Topol’ancik, S. Pradhan, P.-C. Yu, S. Gosh, P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot laser source,” IEEE Photon. Technol. Lett. 16, 960–962 (2004).
[CrossRef]

Hafner, C.

Han, S. H.

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

Hattori, H. T.

Haus, H. A.

Hollinger, G.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Huh, J.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

Hwang, J. K.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

Imada, M.

Inoshita, K.

K. Inoshita, T. Baba, “Lasing at bend, branch and intersection of photonic crystals,” Electron. Lett. 39, 844–846 (2003).
[CrossRef]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Jeon, H.

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

John, S.

L. Florescu, K. Busch, S. John, “Semiclassical theory of lasing in photonic crystals,” J. Opt. Soc. Am. B 19, 2215–2223 (2002).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kim, C. K.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Kim, G. H.

H. Y. Ryu, M. Notomi, G. H. Kim, Y. H. Lee, “High quality-factor whispering gallery mode in the photonic crystal hexagonal disk cavity,” Opt. Express 12, 1708–1719 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, “Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab,” Appl. Phys. Lett. 83, 3870–3872 (2002).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, J. S.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

Kim, S.

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

Kim, S. H.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

Konokenko, V. K.

Kwon, S. H.

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, “Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab,” Appl. Phys. Lett. 83, 3870–3872 (2002).
[CrossRef]

Leclercq, J. L.

Lee, P. T.

P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

H. Y. Ryu, M. Notomi, G. H. Kim, Y. H. Lee, “High quality-factor whispering gallery mode in the photonic crystal hexagonal disk cavity,” Opt. Express 12, 1708–1719 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, “Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab,” Appl. Phys. Lett. 83, 3870–3872 (2002).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799–1808 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593–595 (2003).
[CrossRef]

Manolatou, C.

Martinelli, M.

R. Costa, A. Melloni, M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

Matsumoto, T.

Melloni, A.

R. Costa, A. Melloni, M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

Mochizuki, M.

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Noda, S.

Notomi, M.

O’Brien, J. D.

P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Ohnishi, D.

Okano, M.

Okano, T.

Painter, O.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Park, I.

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

Park, Q. H.

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Pradhan, S.

J. Topol’ancik, S. Pradhan, P.-C. Yu, S. Gosh, P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot laser source,” IEEE Photon. Technol. Lett. 16, 960–962 (2004).
[CrossRef]

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Roh, Y. G.

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799–1808 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, M. Notomi, G. H. Kim, Y. H. Lee, “High quality-factor whispering gallery mode in the photonic crystal hexagonal disk cavity,” Opt. Express 12, 1708–1719 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, “Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab,” Appl. Phys. Lett. 83, 3870–3872 (2002).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799–1808 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Smajic, J.

Smirnov, A. G.

Song, D. S.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Susa, N.

N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic crystal lasers,” J. Appl. Phys. 89, 815–823 (2001).
[CrossRef]

Topol’ancik, J.

J. Topol’ancik, S. Pradhan, P.-C. Yu, S. Gosh, P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot laser source,” IEEE Photon. Technol. Lett. 16, 960–962 (2004).
[CrossRef]

Ushakov, D. V.

Viktorovitch, P.

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799–1808 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Villeneuve, P. R.

Wei, Z. J.

P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Yokohama, M.

M. Yokohama, S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice,” IEEE J. Quantum Electron. 39, 1074–1080 (2003).
[CrossRef]

Yokouchi, N.

N. Yokouchi, A. J. Danner, K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[CrossRef]

Yoon, S.

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

Yu, P.-C.

J. Topol’ancik, S. Pradhan, P.-C. Yu, S. Gosh, P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot laser source,” IEEE Photon. Technol. Lett. 16, 960–962 (2004).
[CrossRef]

Appl. Phys. Lett. (8)

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003).
[CrossRef]

P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

N. Yokouchi, A. J. Danner, K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, “Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab,” Appl. Phys. Lett. 83, 3870–3872 (2002).
[CrossRef]

S. Y. Lin, J. G. Fleming, I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593–595 (2003).
[CrossRef]

Electron. Lett. (1)

K. Inoshita, T. Baba, “Lasing at bend, branch and intersection of photonic crystals,” Electron. Lett. 39, 844–846 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Yokohama, S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice,” IEEE J. Quantum Electron. 39, 1074–1080 (2003).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Costa, A. Melloni, M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

J. Topol’ancik, S. Pradhan, P.-C. Yu, S. Gosh, P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot laser source,” IEEE Photon. Technol. Lett. 16, 960–962 (2004).
[CrossRef]

J. Appl. Phys. (2)

N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic crystal lasers,” J. Appl. Phys. 89, 815–823 (2001).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (3)

Nature (1)

J. S. Foresi, “Photonic bandgap microcavities in channel waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Opt. Express (6)

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Other (1)

B. Cagnac, J. P. Faroux, Lasers: Interaction Lumière-Atomes, 1st ed.(Editions CNRS, Paris, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) General view of an ordinary square lattice DFB laser in the x–y plane. The air holes are assumed to be etched in the InP layer. (b) Y cut of the device, showing its layers.

Fig. 2
Fig. 2

(a) Band diagram for the square lattice of air holes along the ΓX direction. (b) FDTD spectrum for the basic structure.

Fig. 3
Fig. 3

(a) Field distribution (Hz) in the x–y plane for this basic structure at the X-point resonance. (b) Same as (a) but showing the field distribution in the vertical direction.

Fig. 4
Fig. 4

(a) Square lattice shielded by a PhC surrounding lattice. (b) Band diagram for the larger hole shielding the photonic crystal.

Fig. 5
Fig. 5

(a) FDTD spectrum for the shielded structure. (b) Field distribution (Hz) in the x–y plane (top) and in the x–z plane (bottom) at λ = 1504.2 nm for this structure.

Fig. 6
Fig. 6

(a) Square lattice shielded by a square honeycomb lattice of air holes. (b) Band diagram along the direction TX for the square honeycomb lattice.

Fig. 7
Fig. 7

(a) 3D FDTD spectrum of the square lattice shielded by a honeycomb lattice. (b) Field distribution (Hz) at λ = 1504.4 nm in the x–y plane (top) and the x–z plane (bottom) for this structure.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η c = Re ( S E inc · E act * d S S E inc · E inc * d S ) ,
n eff = r eff + 1 1 r eff ,
υ g Γ X = c Re ( n eff ) = 3.06 × 10 6 [ m / s ] ,
E m ( x , y , z , t ) = Re [ ( t ) ϕ m ( x , y , z ) exp ( i ω m t ) ] ,
[ 2 x 2 + 2 y 2 + 2 z 2 + ω m 2 c 2 ε r ( x , y , z ) ] ϕ m ( x , y , z ) = 0 ,
cell ϕ m ( x , y , z ) ε r ( x , y , z ) ϕ p ( x , y , z ) d x d y d z = δ m p ,
ξ m = cell | ϕ m PhC ( x , y , z ) | 2 K ( x , y , z ) d x d y d z cell | ϕ m slab ( x , y , z ) | 2 K ( x , y , z ) d x d y d z ,

Metrics