Abstract

We report the irreversible bleaching characteristics of 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl aminostyryl)-4H-pyran (DCM) doped into perfluorocyclobutene (PFCB) and a new material known as DH-6 doped into amorphous polycarbonate (APC) by a monochromatic bleaching source. The wavelength dependent rate constants for the irreversible bleaching process are found, and the experimental bleaching characteristics are compared to the theoretical bleaching characteristics determined from a kinetic model of the bleaching process.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
    [CrossRef]
  2. D. Tomíc, A. R. Mickelson, “Photobleaching for waveguide formation in a guest-host polyimide,” Appl. Opt. 38, 3893–3903 (1999).
    [CrossRef]
  3. G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen, K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 m range,” Electron. Lett. 33, 518–519 (1997).
    [CrossRef]
  4. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
    [CrossRef]
  5. J. Saltiel, “Perdeuterostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes,” J. Am. Chem. Soc. 89, 1036–10037 (1967).
    [CrossRef]
  6. D. H. Wahldeck, “Photoisomerization dynamics of stilbenes,” Chem. Rev. 91, 415–436 (1991).
    [CrossRef]
  7. E. McKenna, A. P. Verdoni, J. Xue, M. Yetzbacher, R. Fan, A. R. Mickelson, “Kinetic model of irreversible photobleaching of dye-doped polymer waveguide materials,” J. Opt. Soc. Am. B 21, 1294–1301 (2004).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  9. I. N. Levine, Quantum Chemistry, 5th ed. (Prentice Hall, Upper Saddle River, N.J., 2000).

2004 (1)

2000 (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

1999 (1)

1997 (1)

G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen, K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 m range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

1992 (1)

S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
[CrossRef]

1991 (1)

D. H. Wahldeck, “Photoisomerization dynamics of stilbenes,” Chem. Rev. 91, 415–436 (1991).
[CrossRef]

1967 (1)

J. Saltiel, “Perdeuterostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes,” J. Am. Chem. Soc. 89, 1036–10037 (1967).
[CrossRef]

Achen, A.

G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen, K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 m range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Ermer, S.

S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
[CrossRef]

Fan, R.

Fishbeck, G.

G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen, K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 m range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Girton, D. G.

S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
[CrossRef]

Kostrzewa, C.

G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen, K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 m range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Levine, I. N.

I. N. Levine, Quantum Chemistry, 5th ed. (Prentice Hall, Upper Saddle River, N.J., 2000).

Lipscomb, G. F.

S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
[CrossRef]

Lytel, R.

S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
[CrossRef]

McKenna, E.

Mickelson, A. R.

Moosburger, R.

G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen, K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 m range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Petermann, K.

G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen, K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 m range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Saltiel, J.

J. Saltiel, “Perdeuterostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes,” J. Am. Chem. Soc. 89, 1036–10037 (1967).
[CrossRef]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Tomíc, D.

Valley, J. F.

S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
[CrossRef]

Van, T. E.

S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
[CrossRef]

Verdoni, A. P.

Wahldeck, D. H.

D. H. Wahldeck, “Photoisomerization dynamics of stilbenes,” Chem. Rev. 91, 415–436 (1991).
[CrossRef]

Xue, J.

Yetzbacher, M.

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van, D. G. Girton, “DCM polyimide system for poled polymer electro-optic devices,” Appl. Phys. Lett. 61, 2272–2274 (1992).
[CrossRef]

Chem. Rev. (1)

D. H. Wahldeck, “Photoisomerization dynamics of stilbenes,” Chem. Rev. 91, 415–436 (1991).
[CrossRef]

Electron. Lett. (1)

G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen, K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 m range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Saltiel, “Perdeuterostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes,” J. Am. Chem. Soc. 89, 1036–10037 (1967).
[CrossRef]

J. Opt. Soc. Am. B (1)

Science (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Other (2)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

I. N. Levine, Quantum Chemistry, 5th ed. (Prentice Hall, Upper Saddle River, N.J., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption spectrum of an unbleached 3.25–µm film of 27% DH-6/APC (solid curve) and 5 µm film of 3% DCM/PFCB (dashed).

Fig. 2
Fig. 2

Structure of DCM and DH-6.

Fig. 3
Fig. 3

Experimentally determined absorption at the bleaching wavelength for a 3.25 µm film of 27% DH-6/APC versus dose: (a) 633, (b) 360, (c) 514, (d) 457, (e) 488 nm.

Fig. 4
Fig. 4

Experimentally determined absorption at the bleaching wavelength for a 5 µm film of 3% DCM/PFCB versus dose: (a) 360, (b) 457, (c) 488, (d) 514 nm.

Fig. 5
Fig. 5

Theoretically predicted absorption at the bleaching wavelength for a 3.25 µm film of 27% DH-6/APC versus dose: (a) 633, (b) 360, (c) 514, (d) 457, (e) 488 nm.

Fig. 6
Fig. 6

Theoretically predicted absorption at the bleaching wavelength for a 5-µm film of 3% DCM/PFCB versus dose (a) 360, (b) 457, (c) 488, (d) 514 nm.

Fig. 7
Fig. 7

Log plot of the bleaching rate constant s+ versus wavelength for DCM/PFCB (squares) and DH6/APC (triangles). s+ is the rate constant responsible for transient bleaching behavior of the polymer system.

Fig. 8
Fig. 8

Log plot of the bleaching rate constant s versus wavelength for DCM/PFCB (squares) and DH6/APC (triangles). s dictates the overall bleaching behavior of the polymer system.

Fig. 9
Fig. 9

Saltiel’s reaction surface diagram for stilbene.

Fig. 10
Fig. 10

Theoretical energy level diagram for DCM/PFCB and DH6/APC. State B represents the final state of an irreversibly bleached dye molecule. For DH-6/APC the observed fluorescence would indicate that there is a strong radiative transition from Tπ*t back to the ground state.

Tables (2)

Tables Icon

Table 1 DH6/APC-absorption Spectra Initial Conditions

Tables Icon

Table 2 DCM/PFCB-absorption Spectra Initial Conditions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g k ( λ ) = 1 Γ N π exp [ ( λ λ k Γ N ) 2 ] ,
α ( λ , t ) = A 1 ( t ) g 1 ( λ ) + A 2 ( t ) g 2 ( λ ) + g 3 ( λ ) ,
A 1 ( t ) = C 1 , 1 exp ( s t ) + C 1 , 2 exp ( s + t ) ,
A 2 ( t ) = C 2 , 1 exp ( s t ) + C 2 , 2 exp ( s + t ) ,
s ± = 1 τ ( 1 ± κ ) .

Metrics