Abstract

We demonstrate the conversion of a nonreturn-to-zero (NRZ)-formatted electrical data stream into a wavelength-tunable return-to-zero (RZ)-formatted optical pulse code by externally seeding a synchronously sinusoidal-modulated Fabry–Perot laser diode (FPLD) with optical pseudorandom binary-sequence data at 10 Gbits/s (Gbps). The FPLD without a dc-biased current was modulated by use of a power-amplified sinusoidal wave signal (∼25.6 dBm) as an NRZ-to-RZ data-format transformer, which is regeneratively amplified by a closed-loop erbium-doped fiber amplifier. The gain switching and on–off keying operation of the FPLD is initiated under the seeding of self-feedback and external-injection signals. A maximum wavelength tuning range of 30 nm with a side-mode suppression ratio of greater than 36 dB is obtained. The power penalty of the NRZ-to-RZ data-format conversion at 10 Gbps is 1.5 dB.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Chusseau, E. Hemery, J.-M. Lourtioz, “Period doubling in directly modulated InGaAsP semiconductor lasers,” Appl. Phys. Lett. 55, 822–824 (1989).
    [CrossRef]
  2. H. F. Liu, W. F. Ngal, “Nonlinear dynamics of a directly modulated 1.55 µm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron. 29, 1668–1675 (1993).
    [CrossRef]
  3. Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55–µm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron. 34, 1213–1223 (1998).
    [CrossRef]
  4. K. K. Chow, C. Shu, H. F. Liu, “All-optical control of clock frequency division using injection-locked Fabry–Perot laser diode,” Electron. Lett. 39, 1136–1138 (2003).
    [CrossRef]
  5. H. K. Tsang, L. Y. Chan, S. P. Yam, C. Shu, “Experimental characterization of dual-wavelength injection-locking of a Fabry–Perot laser diode,” Opt. Commun. 156, 321–326 (1998).
    [CrossRef]
  6. L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry–Perot laser diode as modulator for WDM access networks,” Electron. Lett. 38, 43–45 (2002).
    [CrossRef]
  7. C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
    [CrossRef]
  8. M. Owen, M. F. C. Stephens, R. V. Penty, I. H. White, “All-optical 3R regeneration and format conversion in an integrated SOA/DFB laser,” in Proceedings of Optical Fiber Communication Conference, T. Li, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 76–78.
  9. S. Bigo, E. Desurvire, S. Gauchard, E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994).
    [CrossRef]
  10. S. Bigo, E. Desurvire, B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30, 1868–1869 (1994).
    [CrossRef]
  11. K. J. Blow, N. J. Doran, B. K. Nayar, B. P. Nelson, “Two-wavelength operation of the nonlinear fiber loop mirror,” Opt. Lett. 15, 248–250 (1990).
    [CrossRef] [PubMed]
  12. D. Norte, A. E. Willner, “Experimental demonstrations of all-optical conversions between the RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency,” IEEE Photon. Technol. Lett. 8, 712–714 (1996).
    [CrossRef]
  13. J. Horer, E. Patzak, “Large-signal analysis of all-optical wavelength conversion using two-mode injection-locking in semiconductor lasers,” IEEE J. Quantum. Electron. 33, 596–608 (1997).
    [CrossRef]
  14. S. Bouchoule, N. Stelmakh, M. Cavelier, J.-M. Lourtioz, “Highly attenuating external cavity for picosecond-tunable pulse generation from gain/Q-switched laser diodes,” IEEE J. Quantum Electron. 29, 1693–1700 (1993).
    [CrossRef]
  15. S. P. Yam, C. Shu, “All-optical wavelength switching in a semiconductor laser using self-seeding and external injection-seeding,” Appl. Phys. Lett. 72, 1024–1026 (1998).
    [CrossRef]
  16. L. P. Barry, P. Anandarajah, A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry–Perot laser,” IEEE Photon. Technol. Lett. 13, 1014–1016 (2001).
    [CrossRef]

2003 (1)

K. K. Chow, C. Shu, H. F. Liu, “All-optical control of clock frequency division using injection-locked Fabry–Perot laser diode,” Electron. Lett. 39, 1136–1138 (2003).
[CrossRef]

2002 (2)

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry–Perot laser diode as modulator for WDM access networks,” Electron. Lett. 38, 43–45 (2002).
[CrossRef]

C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[CrossRef]

2001 (1)

L. P. Barry, P. Anandarajah, A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry–Perot laser,” IEEE Photon. Technol. Lett. 13, 1014–1016 (2001).
[CrossRef]

1998 (3)

S. P. Yam, C. Shu, “All-optical wavelength switching in a semiconductor laser using self-seeding and external injection-seeding,” Appl. Phys. Lett. 72, 1024–1026 (1998).
[CrossRef]

Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55–µm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron. 34, 1213–1223 (1998).
[CrossRef]

H. K. Tsang, L. Y. Chan, S. P. Yam, C. Shu, “Experimental characterization of dual-wavelength injection-locking of a Fabry–Perot laser diode,” Opt. Commun. 156, 321–326 (1998).
[CrossRef]

1997 (1)

J. Horer, E. Patzak, “Large-signal analysis of all-optical wavelength conversion using two-mode injection-locking in semiconductor lasers,” IEEE J. Quantum. Electron. 33, 596–608 (1997).
[CrossRef]

1996 (1)

D. Norte, A. E. Willner, “Experimental demonstrations of all-optical conversions between the RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency,” IEEE Photon. Technol. Lett. 8, 712–714 (1996).
[CrossRef]

1994 (2)

S. Bigo, E. Desurvire, S. Gauchard, E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994).
[CrossRef]

S. Bigo, E. Desurvire, B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30, 1868–1869 (1994).
[CrossRef]

1993 (2)

H. F. Liu, W. F. Ngal, “Nonlinear dynamics of a directly modulated 1.55 µm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron. 29, 1668–1675 (1993).
[CrossRef]

S. Bouchoule, N. Stelmakh, M. Cavelier, J.-M. Lourtioz, “Highly attenuating external cavity for picosecond-tunable pulse generation from gain/Q-switched laser diodes,” IEEE J. Quantum Electron. 29, 1693–1700 (1993).
[CrossRef]

1990 (1)

1989 (1)

L. Chusseau, E. Hemery, J.-M. Lourtioz, “Period doubling in directly modulated InGaAsP semiconductor lasers,” Appl. Phys. Lett. 55, 822–824 (1989).
[CrossRef]

Anandarajah, P.

L. P. Barry, P. Anandarajah, A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry–Perot laser,” IEEE Photon. Technol. Lett. 13, 1014–1016 (2001).
[CrossRef]

Arahira, S.

Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55–µm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron. 34, 1213–1223 (1998).
[CrossRef]

Barry, L. P.

L. P. Barry, P. Anandarajah, A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry–Perot laser,” IEEE Photon. Technol. Lett. 13, 1014–1016 (2001).
[CrossRef]

Bigo, S.

S. Bigo, E. Desurvire, B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30, 1868–1869 (1994).
[CrossRef]

S. Bigo, E. Desurvire, S. Gauchard, E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994).
[CrossRef]

Blow, K. J.

Bouchoule, S.

S. Bouchoule, N. Stelmakh, M. Cavelier, J.-M. Lourtioz, “Highly attenuating external cavity for picosecond-tunable pulse generation from gain/Q-switched laser diodes,” IEEE J. Quantum Electron. 29, 1693–1700 (1993).
[CrossRef]

Brun, E.

S. Bigo, E. Desurvire, S. Gauchard, E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994).
[CrossRef]

Cavelier, M.

S. Bouchoule, N. Stelmakh, M. Cavelier, J.-M. Lourtioz, “Highly attenuating external cavity for picosecond-tunable pulse generation from gain/Q-switched laser diodes,” IEEE J. Quantum Electron. 29, 1693–1700 (1993).
[CrossRef]

Chan, C. K.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry–Perot laser diode as modulator for WDM access networks,” Electron. Lett. 38, 43–45 (2002).
[CrossRef]

Chan, L. Y.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry–Perot laser diode as modulator for WDM access networks,” Electron. Lett. 38, 43–45 (2002).
[CrossRef]

H. K. Tsang, L. Y. Chan, S. P. Yam, C. Shu, “Experimental characterization of dual-wavelength injection-locking of a Fabry–Perot laser diode,” Opt. Commun. 156, 321–326 (1998).
[CrossRef]

Chen, L. K.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry–Perot laser diode as modulator for WDM access networks,” Electron. Lett. 38, 43–45 (2002).
[CrossRef]

Chow, C. W.

C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[CrossRef]

Chow, K. K.

K. K. Chow, C. Shu, H. F. Liu, “All-optical control of clock frequency division using injection-locked Fabry–Perot laser diode,” Electron. Lett. 39, 1136–1138 (2003).
[CrossRef]

Chusseau, L.

L. Chusseau, E. Hemery, J.-M. Lourtioz, “Period doubling in directly modulated InGaAsP semiconductor lasers,” Appl. Phys. Lett. 55, 822–824 (1989).
[CrossRef]

Desruelle, B.

S. Bigo, E. Desurvire, B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30, 1868–1869 (1994).
[CrossRef]

Desurvire, E.

S. Bigo, E. Desurvire, B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30, 1868–1869 (1994).
[CrossRef]

S. Bigo, E. Desurvire, S. Gauchard, E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994).
[CrossRef]

Doran, N. J.

Gauchard, S.

S. Bigo, E. Desurvire, S. Gauchard, E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994).
[CrossRef]

Hemery, E.

L. Chusseau, E. Hemery, J.-M. Lourtioz, “Period doubling in directly modulated InGaAsP semiconductor lasers,” Appl. Phys. Lett. 55, 822–824 (1989).
[CrossRef]

Horer, J.

J. Horer, E. Patzak, “Large-signal analysis of all-optical wavelength conversion using two-mode injection-locking in semiconductor lasers,” IEEE J. Quantum. Electron. 33, 596–608 (1997).
[CrossRef]

Kaszubowska, A.

L. P. Barry, P. Anandarajah, A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry–Perot laser,” IEEE Photon. Technol. Lett. 13, 1014–1016 (2001).
[CrossRef]

Kutsuzawa, S.

Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55–µm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron. 34, 1213–1223 (1998).
[CrossRef]

Liu, H. F.

K. K. Chow, C. Shu, H. F. Liu, “All-optical control of clock frequency division using injection-locked Fabry–Perot laser diode,” Electron. Lett. 39, 1136–1138 (2003).
[CrossRef]

H. F. Liu, W. F. Ngal, “Nonlinear dynamics of a directly modulated 1.55 µm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron. 29, 1668–1675 (1993).
[CrossRef]

Lourtioz, J.-M.

S. Bouchoule, N. Stelmakh, M. Cavelier, J.-M. Lourtioz, “Highly attenuating external cavity for picosecond-tunable pulse generation from gain/Q-switched laser diodes,” IEEE J. Quantum Electron. 29, 1693–1700 (1993).
[CrossRef]

L. Chusseau, E. Hemery, J.-M. Lourtioz, “Period doubling in directly modulated InGaAsP semiconductor lasers,” Appl. Phys. Lett. 55, 822–824 (1989).
[CrossRef]

Matsui, Y.

Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55–µm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron. 34, 1213–1223 (1998).
[CrossRef]

Nayar, B. K.

Nelson, B. P.

Ngal, W. F.

H. F. Liu, W. F. Ngal, “Nonlinear dynamics of a directly modulated 1.55 µm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron. 29, 1668–1675 (1993).
[CrossRef]

Norte, D.

D. Norte, A. E. Willner, “Experimental demonstrations of all-optical conversions between the RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency,” IEEE Photon. Technol. Lett. 8, 712–714 (1996).
[CrossRef]

Ogawa, Y.

Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55–µm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron. 34, 1213–1223 (1998).
[CrossRef]

Owen, M.

M. Owen, M. F. C. Stephens, R. V. Penty, I. H. White, “All-optical 3R regeneration and format conversion in an integrated SOA/DFB laser,” in Proceedings of Optical Fiber Communication Conference, T. Li, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 76–78.

Patzak, E.

J. Horer, E. Patzak, “Large-signal analysis of all-optical wavelength conversion using two-mode injection-locking in semiconductor lasers,” IEEE J. Quantum. Electron. 33, 596–608 (1997).
[CrossRef]

Penty, R. V.

M. Owen, M. F. C. Stephens, R. V. Penty, I. H. White, “All-optical 3R regeneration and format conversion in an integrated SOA/DFB laser,” in Proceedings of Optical Fiber Communication Conference, T. Li, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 76–78.

Shu, C.

K. K. Chow, C. Shu, H. F. Liu, “All-optical control of clock frequency division using injection-locked Fabry–Perot laser diode,” Electron. Lett. 39, 1136–1138 (2003).
[CrossRef]

H. K. Tsang, L. Y. Chan, S. P. Yam, C. Shu, “Experimental characterization of dual-wavelength injection-locking of a Fabry–Perot laser diode,” Opt. Commun. 156, 321–326 (1998).
[CrossRef]

S. P. Yam, C. Shu, “All-optical wavelength switching in a semiconductor laser using self-seeding and external injection-seeding,” Appl. Phys. Lett. 72, 1024–1026 (1998).
[CrossRef]

Stelmakh, N.

S. Bouchoule, N. Stelmakh, M. Cavelier, J.-M. Lourtioz, “Highly attenuating external cavity for picosecond-tunable pulse generation from gain/Q-switched laser diodes,” IEEE J. Quantum Electron. 29, 1693–1700 (1993).
[CrossRef]

Stephens, M. F. C.

M. Owen, M. F. C. Stephens, R. V. Penty, I. H. White, “All-optical 3R regeneration and format conversion in an integrated SOA/DFB laser,” in Proceedings of Optical Fiber Communication Conference, T. Li, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 76–78.

Suzuki, A.

Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55–µm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron. 34, 1213–1223 (1998).
[CrossRef]

Tong, D. T. K.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry–Perot laser diode as modulator for WDM access networks,” Electron. Lett. 38, 43–45 (2002).
[CrossRef]

Tong, F.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry–Perot laser diode as modulator for WDM access networks,” Electron. Lett. 38, 43–45 (2002).
[CrossRef]

Tsang, H. K.

C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[CrossRef]

H. K. Tsang, L. Y. Chan, S. P. Yam, C. Shu, “Experimental characterization of dual-wavelength injection-locking of a Fabry–Perot laser diode,” Opt. Commun. 156, 321–326 (1998).
[CrossRef]

White, I. H.

M. Owen, M. F. C. Stephens, R. V. Penty, I. H. White, “All-optical 3R regeneration and format conversion in an integrated SOA/DFB laser,” in Proceedings of Optical Fiber Communication Conference, T. Li, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 76–78.

Willner, A. E.

D. Norte, A. E. Willner, “Experimental demonstrations of all-optical conversions between the RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency,” IEEE Photon. Technol. Lett. 8, 712–714 (1996).
[CrossRef]

Wong, C. S.

C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[CrossRef]

Yam, S. P.

H. K. Tsang, L. Y. Chan, S. P. Yam, C. Shu, “Experimental characterization of dual-wavelength injection-locking of a Fabry–Perot laser diode,” Opt. Commun. 156, 321–326 (1998).
[CrossRef]

S. P. Yam, C. Shu, “All-optical wavelength switching in a semiconductor laser using self-seeding and external injection-seeding,” Appl. Phys. Lett. 72, 1024–1026 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

L. Chusseau, E. Hemery, J.-M. Lourtioz, “Period doubling in directly modulated InGaAsP semiconductor lasers,” Appl. Phys. Lett. 55, 822–824 (1989).
[CrossRef]

S. P. Yam, C. Shu, “All-optical wavelength switching in a semiconductor laser using self-seeding and external injection-seeding,” Appl. Phys. Lett. 72, 1024–1026 (1998).
[CrossRef]

Electron. Lett. (4)

K. K. Chow, C. Shu, H. F. Liu, “All-optical control of clock frequency division using injection-locked Fabry–Perot laser diode,” Electron. Lett. 39, 1136–1138 (2003).
[CrossRef]

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry–Perot laser diode as modulator for WDM access networks,” Electron. Lett. 38, 43–45 (2002).
[CrossRef]

S. Bigo, E. Desurvire, S. Gauchard, E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994).
[CrossRef]

S. Bigo, E. Desurvire, B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30, 1868–1869 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. F. Liu, W. F. Ngal, “Nonlinear dynamics of a directly modulated 1.55 µm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron. 29, 1668–1675 (1993).
[CrossRef]

Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55–µm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron. 34, 1213–1223 (1998).
[CrossRef]

S. Bouchoule, N. Stelmakh, M. Cavelier, J.-M. Lourtioz, “Highly attenuating external cavity for picosecond-tunable pulse generation from gain/Q-switched laser diodes,” IEEE J. Quantum Electron. 29, 1693–1700 (1993).
[CrossRef]

IEEE J. Quantum. Electron. (1)

J. Horer, E. Patzak, “Large-signal analysis of all-optical wavelength conversion using two-mode injection-locking in semiconductor lasers,” IEEE J. Quantum. Electron. 33, 596–608 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. Norte, A. E. Willner, “Experimental demonstrations of all-optical conversions between the RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency,” IEEE Photon. Technol. Lett. 8, 712–714 (1996).
[CrossRef]

L. P. Barry, P. Anandarajah, A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry–Perot laser,” IEEE Photon. Technol. Lett. 13, 1014–1016 (2001).
[CrossRef]

Opt. Commun. (2)

H. K. Tsang, L. Y. Chan, S. P. Yam, C. Shu, “Experimental characterization of dual-wavelength injection-locking of a Fabry–Perot laser diode,” Opt. Commun. 156, 321–326 (1998).
[CrossRef]

C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. Owen, M. F. C. Stephens, R. V. Penty, I. H. White, “All-optical 3R regeneration and format conversion in an integrated SOA/DFB laser,” in Proceedings of Optical Fiber Communication Conference, T. Li, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 76–78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dual-wavelength and wavelength-converted operating mechanisms of the FPLD (a) just below threshold, (b) in single-mode injection, (c) in dual-wavelength injection, and (d) under wavelength-conversion conditions. Dashed curve, injection-locking profile of the FPLD mode; solid bars, wavelengths injected at λe and λf.

Fig. 2
Fig. 2

FPLD-based data-format transformer. Attn., optical attenuator; DSO, digital sampling oscilloscope; EDFA, erbium-doped fiber amplifier; OC1 and OC2, optical couplers; OSA, optical spectrum analyzer; PD, high-speed photodetector; PS, electrical power splitter; TF, tunable filter; TL, tunable laser; MZM, Mach–Zehnder intensity modulator.

Fig. 3
Fig. 3

Lasing spectra (upper figures) and pulse trains (lower figures) of the FPLD-based data-format transformer with the dual-wavelength scheme. (a) and (c) λe is switched on. (b) and (d) λe is switched off.

Fig. 4
Fig. 4

Lasing spectra (upper figures) and pulse trains (lower figures) of the FPLD-based data-format transformer with the wavelength-conversion scheme. (a) and (b) The optical spectra; (c) and (d) the corresponding pulse trains when λe is on and off, respectively.

Fig. 5
Fig. 5

NRZ-formatted electrical data and FPLD-transformed RZ-formatted optical pulsed data at bit rate of 1 Gbps. The inset shows the NRZ- and FPLD-transformed data stream at 10 Gbps (by addition of a dc-bias current of the FPLD).

Fig. 6
Fig. 6

Bit-error-rate (BER) performance at 10 Gbps. The power penalty at the 10−9 BER level is 1.5 dB.

Metrics