Abstract

We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry–Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF’s length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ö. Boyraz, M. N. Islam, “A multiwavelength cw source based on longitudinal mode-carving of supercontinuum generated in fibers and noise performance,” J. Lightwave Technol. 20, 1493–1499 (2002).
    [Crossref]
  2. E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
    [Crossref]
  3. K. Imai, M. Kourogi, M. Ohtsu, “30–THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
    [Crossref]
  4. M. Teshima, K. Sato, M. Koga, “Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes,” IEEE J. Quantum Electron. 34, 1588–1596 (1998).
    [Crossref]
  5. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
    [Crossref]
  6. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, “Frequency-resolved optical gating and signal-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [Crossref]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York1995).
  8. M. Nakazawa, K. Tamura, E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
    [Crossref]
  9. Z. Wang, T. Wang, L. Huo, C. Lou, Y. Gao, “Pulse-amplitude-equalization methods for the repetition rate multiplication using F-P filter,” Int. J. Infrared Millimeter Waves 24, 399–407 (2003).
    [Crossref]

2003 (1)

Z. Wang, T. Wang, L. Huo, C. Lou, Y. Gao, “Pulse-amplitude-equalization methods for the repetition rate multiplication using F-P filter,” Int. J. Infrared Millimeter Waves 24, 399–407 (2003).
[Crossref]

2002 (3)

2001 (1)

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

1998 (2)

K. Imai, M. Kourogi, M. Ohtsu, “30–THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[Crossref]

M. Teshima, K. Sato, M. Koga, “Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes,” IEEE J. Quantum Electron. 34, 1588–1596 (1998).
[Crossref]

1996 (1)

M. Nakazawa, K. Tamura, E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York1995).

Boyraz, Ö.

Gaeta, A. L.

Gao, Y.

Z. Wang, T. Wang, L. Huo, C. Lou, Y. Gao, “Pulse-amplitude-equalization methods for the repetition rate multiplication using F-P filter,” Int. J. Infrared Millimeter Waves 24, 399–407 (2003).
[Crossref]

Gu, X.

Huo, L.

Z. Wang, T. Wang, L. Huo, C. Lou, Y. Gao, “Pulse-amplitude-equalization methods for the repetition rate multiplication using F-P filter,” Int. J. Infrared Millimeter Waves 24, 399–407 (2003).
[Crossref]

Imai, K.

K. Imai, M. Kourogi, M. Ohtsu, “30–THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[Crossref]

Ishii, M.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

Islam, M. N.

Itoh, M.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

Jinguji, K.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

Kimmel, M.

Koga, M.

M. Teshima, K. Sato, M. Koga, “Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes,” IEEE J. Quantum Electron. 34, 1588–1596 (1998).
[Crossref]

Kourogi, M.

K. Imai, M. Kourogi, M. Ohtsu, “30–THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[Crossref]

Lou, C.

Z. Wang, T. Wang, L. Huo, C. Lou, Y. Gao, “Pulse-amplitude-equalization methods for the repetition rate multiplication using F-P filter,” Int. J. Infrared Millimeter Waves 24, 399–407 (2003).
[Crossref]

Morioka, T.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

Nakazawa, M.

M. Nakazawa, K. Tamura, E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

O’Shea, P.

Ohara, T.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

Ohtsu, M.

K. Imai, M. Kourogi, M. Ohtsu, “30–THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[Crossref]

Sato, K.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

M. Teshima, K. Sato, M. Koga, “Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes,” IEEE J. Quantum Electron. 34, 1588–1596 (1998).
[Crossref]

Shreenath, A. P.

Takara, H.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

Tamura, K.

M. Nakazawa, K. Tamura, E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

Teshima, M.

M. Teshima, K. Sato, M. Koga, “Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes,” IEEE J. Quantum Electron. 34, 1588–1596 (1998).
[Crossref]

Trebino, R.

Wang, T.

Z. Wang, T. Wang, L. Huo, C. Lou, Y. Gao, “Pulse-amplitude-equalization methods for the repetition rate multiplication using F-P filter,” Int. J. Infrared Millimeter Waves 24, 399–407 (2003).
[Crossref]

Wang, Z.

Z. Wang, T. Wang, L. Huo, C. Lou, Y. Gao, “Pulse-amplitude-equalization methods for the repetition rate multiplication using F-P filter,” Int. J. Infrared Millimeter Waves 24, 399–407 (2003).
[Crossref]

Xu, L.

Yamada, E.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

Yoshida, E.

M. Nakazawa, K. Tamura, E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

Zeek, E.

Electron. Lett. (2)

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, M. Ishii, “150 channel supercontinuum cw optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electron. Lett. 37, 304–306 (2001).
[Crossref]

M. Nakazawa, K. Tamura, E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by self-phase modulation and spectral filtering,” Electron. Lett. 32, 461–463 (1996).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Imai, M. Kourogi, M. Ohtsu, “30–THz span optical frequency comb generation by self-phase modulation in an optical fiber,” IEEE J. Quantum Electron. 34, 54–60 (1998).
[Crossref]

M. Teshima, K. Sato, M. Koga, “Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes,” IEEE J. Quantum Electron. 34, 1588–1596 (1998).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

Z. Wang, T. Wang, L. Huo, C. Lou, Y. Gao, “Pulse-amplitude-equalization methods for the repetition rate multiplication using F-P filter,” Int. J. Infrared Millimeter Waves 24, 399–407 (2003).
[Crossref]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the numerical simulation. AWG, arrayed-waveguide grating.

Fig. 2
Fig. 2

Substructures between the longitudinal modes of the SCs generated by pump pulses with (a) no fluctuations, (b) fluctuations with periods of 200 ps and (c) 400 ps, and (d) pseudorandom fluctuations.

Fig. 3
Fig. 3

Substructures between the longitudinal modes of SCs generated by pump pulses with fluctuations of (a) m = 0, (b) m = 0.001, (c) m = 0.002, and (d) m = 0.003.

Fig. 4
Fig. 4

Dependence on m (fluctuations of pump pulses) of the modulation depths between the longitudinal modes.

Fig. 5
Fig. 5

Effects of optical filters with different 3-dB bandwidths on (a) fluctuations and (b) average power of pump pulses (100-m HNLF HNLF).

Fig. 6
Fig. 6

Effects of HNLF length on (a) fluctuations and (b) average power of pump pulses (200-GHz 3-dB bandwidth).

Fig. 7
Fig. 7

Improvement in modulation depths by the addition of a HNLF and an optical bandpass filter.

Fig. 8
Fig. 8

Optical spectra of a SC near 1543 nm: (a) generated by pump pulses without fluctuations, (b) generated by pump pulses with fluctuations (m = 0.004), (c) generated by pump pulses with equalization, and (d) after a FP filter.

Fig. 9
Fig. 9

Modulation depths of longitudinal modes: (a) improved by use of a combination of a HNLF and an optical bandpass filter and both the combination and a FP filter and (b) improved by use both the combination and the FP filter with various reflection ratios (R).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U z + i 2 β 2 2 U t 2 1 6 β 3 3 U t 3 = i γ | U | 2 U ,

Metrics