Abstract

A new fast-Fourier-transform-based model of a page-oriented holographic data-storage system is presented. The model accounts for essential system and storage material features (e.g. diffraction, noises, and saturation) and provides reliable results in the form of output images, histograms, or bit-error rates. The model is built on a modular basis and provides the possibility of working with different system versions, key components, and storage materials. Applications of the method are presented through examples of optimization of the data density, reference beam size at Gaussian beam illumination, and calculation of the storage medium’s positioning tolerances in accordance with the results of test measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlang, Berlin, 2000).
    [CrossRef]
  2. J. T. Gallo, M. L. Jones, C. M. Verber, “Computer modeling of the effects of apertures in the Fourier-transform plane of Fourier-transform imaging-systems,” Appl. Opt. 33, 2891–2899 (1994).
    [CrossRef] [PubMed]
  3. A. Lahrichi, “Bit error rate and system limitations on the storage capacity of volume holographic memory systems,” Opt. Eng. 40, 2392–2399 (2001).
    [CrossRef]
  4. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
    [CrossRef] [PubMed]
  5. M.-P. Bernal, G. W. Burr, H. Coufal, M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
    [CrossRef]
  6. V. Vadde, B. V. K. Vijaya Kumar, “Channel modeling and estimation for interpage equalization in pixel-matched volume holographic data storage,” Appl. Opt. 38, 4374–4386 (1999).
    [CrossRef]
  7. M. Keskinoz, B. V. K. Vijaya Kumar, “Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels,” Appl. Opt. 43, 1368–1378 (2004).
    [CrossRef] [PubMed]
  8. G. A. Betzos, M. S. Porter, J. F. Hutton, P. A. Mitkas, “Optical storage interactive simulator (OASIS): an interactive tool for the analysis of page-oriented optical memories,” Appl. Opt. 37, 6115–6126 (1998).
    [CrossRef]
  9. P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
    [CrossRef]
  10. A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Stuttgart) 115, 541–546 (2004).
    [CrossRef]
  11. B. M. King, G. W. Burr, M. A. Neifeld, “Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage,” Appl. Opt. 42, 2546–2559 (2003).
    [CrossRef] [PubMed]
  12. E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
    [CrossRef]
  13. G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
    [CrossRef]
  14. P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 315–323 (2000).
    [CrossRef]
  15. F. Dai, C. Gu, “Effect of Gaussian references on cross-talk noise reduction in volume holographic memory,” Opt. Lett. 22, 1802–1804 (1997).
    [CrossRef]
  16. T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
    [CrossRef]

2004

A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Stuttgart) 115, 541–546 (2004).
[CrossRef]

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

M. Keskinoz, B. V. K. Vijaya Kumar, “Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels,” Appl. Opt. 43, 1368–1378 (2004).
[CrossRef] [PubMed]

2003

B. M. King, G. W. Burr, M. A. Neifeld, “Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage,” Appl. Opt. 42, 2546–2559 (2003).
[CrossRef] [PubMed]

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

2001

A. Lahrichi, “Bit error rate and system limitations on the storage capacity of volume holographic memory systems,” Opt. Eng. 40, 2392–2399 (2001).
[CrossRef]

1999

1998

1997

1994

Bernal, M.-P.

Betzos, G. A.

Burr, G. W.

Coufal, H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlang, Berlin, 2000).
[CrossRef]

Dai, F.

Erdei, G.

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

Fodor, J.

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

Gallo, J. T.

Grygier, R. K.

Gu, C.

Hoffnagle, J. A.

Hutton, J. F.

Jefferson, C. M.

Jones, M. L.

Kerekes, Á.

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

Keskinoz, M.

King, B. M.

Koppa, P.

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 315–323 (2000).
[CrossRef]

Lahrichi, A.

A. Lahrichi, “Bit error rate and system limitations on the storage capacity of volume holographic memory systems,” Opt. Eng. 40, 2392–2399 (2001).
[CrossRef]

Lorincz, E.

A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Stuttgart) 115, 541–546 (2004).
[CrossRef]

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 315–323 (2000).
[CrossRef]

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

Lovász, M.

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

Mitkas, P. A.

Neifeld, M. A.

Oesterschulze, E.

Porter, M. S.

Psaltis, D.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlang, Berlin, 2000).
[CrossRef]

Quintanilla, M.

Ramanujam, P. S.

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

Richter, P.

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 315–323 (2000).
[CrossRef]

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

Sajti, Sz.

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

Shelby, R. M.

Sincerbox, G. T.

Süto, A.

A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Stuttgart) 115, 541–546 (2004).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

Szarvas, G.

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 315–323 (2000).
[CrossRef]

Ujhelyi, F.

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

Ujvári, T.

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

Vadde, V.

Várhegyi, P.

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 315–323 (2000).
[CrossRef]

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

Verber, C. M.

Vijaya Kumar, B. V. K.

Appl. Opt.

J. T. Gallo, M. L. Jones, C. M. Verber, “Computer modeling of the effects of apertures in the Fourier-transform plane of Fourier-transform imaging-systems,” Appl. Opt. 33, 2891–2899 (1994).
[CrossRef] [PubMed]

M.-P. Bernal, G. W. Burr, H. Coufal, M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
[CrossRef]

V. Vadde, B. V. K. Vijaya Kumar, “Channel modeling and estimation for interpage equalization in pixel-matched volume holographic data storage,” Appl. Opt. 38, 4374–4386 (1999).
[CrossRef]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
[CrossRef] [PubMed]

G. A. Betzos, M. S. Porter, J. F. Hutton, P. A. Mitkas, “Optical storage interactive simulator (OASIS): an interactive tool for the analysis of page-oriented optical memories,” Appl. Opt. 37, 6115–6126 (1998).
[CrossRef]

B. M. King, G. W. Burr, M. A. Neifeld, “Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage,” Appl. Opt. 42, 2546–2559 (2003).
[CrossRef] [PubMed]

M. Keskinoz, B. V. K. Vijaya Kumar, “Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels,” Appl. Opt. 43, 1368–1378 (2004).
[CrossRef] [PubMed]

Appl. Phys. B

P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397–402 (2003).
[CrossRef]

J. Opt. A. Pure Appl. Opt.

T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lőrincz, P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A. Pure Appl. Opt. 6, 401–411 (2004).
[CrossRef]

Opt. Eng.

A. Lahrichi, “Bit error rate and system limitations on the storage capacity of volume holographic memory systems,” Opt. Eng. 40, 2392–2399 (2001).
[CrossRef]

Opt. Lett.

Optik (Stuttgart)

A. Sütő, E. Lőrincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Stuttgart) 115, 541–546 (2004).
[CrossRef]

Other

E. Lőrincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütő, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Devices V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991, 34–44 (2003).
[CrossRef]

G. Erdei, G. Szarvas, E. Lőrincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, P. Richter, “Optical system of holographic memory card writing/reading equipment,” in Novel Optical System Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 109–118 (2000).
[CrossRef]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 315–323 (2000).
[CrossRef]

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlang, Berlin, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Left, test image of 128 × 128 pixels and right, fragment of 30 × 20 pixels magnified for illustration.

Fig. 2
Fig. 2

Effectof distant pixels on the histograms of a 15 × 15 pixel block (a) for no data other than 5 pixels and (b), (c) with different data present.

Fig. 3
Fig. 3

Histograms obtained from (a) 64 × 64 SML pixels, (b) 128 × 1281 pixels, and (c) the sum of five calculations of 128 × 128 pixels.

Fig. 4
Fig. 4

Line diagram of the unfolded HMC optical system.

Fig. 5
Fig. 5

Hologram plane and output image intensity of the simulation compared with those of the experiment. (A fragment of 30 × 20 pixels from a test image of 128 × 128 pixels is shown.)

Fig. 6
Fig. 6

Effect of the Gaussian reference beam on the raw BER.

Fig. 7
Fig. 7

Increase in raw BER caused by reading of the hologram with the reference beam shifted to a blank area.

Fig. 8
Fig. 8

Increase in raw BER caused by reading of the hologram with the reference beam shifted to the area of another hologram.

Tables (2)

Tables Icon

Table 1 Effect of Fourier (FS) and Real Plane (RS) Sampling on the Calculated Raw BER in a System Containing a Fourier Aperture Size of 1.2 times the Nyquist Aperture and an Experimental Raw BER of 0.011a

Tables Icon

Table 2 Model and Illustration of the Effects of Aperture Size, Given as the Ratio of the Nyquist Aperture, on the Storage Density and the Raw BER

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

raw BER = 1 2 ( number of erroneous dark pixels total number of dark pixels + number of erroneous light pixels total number of light pixels ) .
PER = number of erroneous pixels total number of pixels .
raw BER 1 2 [ t w 0 ( x ) d x w 0 ( x ) d x + t w 1 ( x ) d x w 1 ( x ) d x ] .

Metrics