Abstract

Series of amorphous SiO2, ZrO2 and HfO2 films were prepared by electron-beam evaporation at various oxygen pressures such that the packing density varied from 0.6 to 0.82. Transmittance spectra were evaluated with respect to thickness and refractive index by application of analytical formulas to the interference extrema and by dielectric modeling. The thickness of the films ranged from 150 to 1500 nm. The coefficients of Cauchy and Sellmeier dispersion curves were determined as a function of the packing density. The mass density of the compact amorphous grains was estimated by an effective-medium theory and a general refractivity formula. It is similar to those of the crystalline materials. We used the optical data to design multilayer coatings for laser applications in a broad spectral range, including the UV.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
    [CrossRef]
  2. Prof. Feierabend GmbH, Lise-Meitner-Allee 4, 44801 Bochum, Germany.
  3. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E. 16, 1214–1222 (1983).
    [CrossRef]
  4. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991), Sec. 6.2.
  5. H. Ahrens, “Bestimmung der Absorptionsindices und der Struktur dielektrischer Aufdampfschichten in Abhängigkeit von den Herstellungsparametern,” dissertation (Technische Universität Hannover, Hannover, Germany, 1974).
  6. Scout 98 software. (M. Theiss, Hard- and Software for Optical Spectroscopy, Aachen, Germany; www.mtheiss.com ).
  7. D. Mergel, Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D 35, 794–801 (2002).
    [CrossRef]
  8. S. K. O’Leary, S. R. Johnson, P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82, 3334–3340 (1997).
    [CrossRef]
  9. O. Stenzel, Das Dünnschichtspektrum. Ein Zugang von den Grundlagen zur Spezialliteratur (Akademie-Verlag, Berlin, 1996).
  10. Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and reflectance measurements,” Thin Solid Films 372, 149–155 (2000).
    [CrossRef]
  11. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 76th ed. (CRC Press, Boca Raton, Fla., 1995–1996), p. 10–302.
  12. Silicium Teil B, Gmelins Handbuch der Anorganischen Chemie, 8th ed. (Verlag-Chemie, Weinheim1959), Part B, pp. 263 (n) and 321 (ρ).
  13. Ref. 9, p. 4–137.
  14. O. Anderson, C. Ottermann, “Properties and characterization of dielectric thin films,” in Thin Films on Glass, H. Bach, D. Krause, eds. (Springer-Verlag, Berlin, 1997), pp. 165–167.
  15. Zirkonium, Gmelins Handbuch der Anorganischen Chemie, 8th ed. (Verlag-Chemie, Weinheim1958), pp. 232 (n) and 222 (ρ).
  16. Ref. 11, p. 4–133.
  17. J. Adam, M. D. Rogers, “The crystal structure of ZrO2 and HfO2,” Acta Crystallogr. 12, 951 (1959).
    [CrossRef]
  18. D. L. Wood, K. Nassau, T. Y. Kometai, D. L. Nash, “Optical properties of cubic hafnia stabilized with yttria,” Appl. Opt. 29, 604–607 (1990).
    [CrossRef] [PubMed]
  19. B. André, L. Poupinet, G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power laser applications,” J. Vac. Sci. Technol. A 18, 2372–2377 (2000).
    [CrossRef]
  20. S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
    [CrossRef]
  21. M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
    [CrossRef]
  22. M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
    [CrossRef]
  23. M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
    [CrossRef]
  24. J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
    [CrossRef]
  25. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, C. Amra, “High reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002).
    [CrossRef] [PubMed]
  26. Filmstar Software (FTG Software Associates, Princeton, N.J.; www.ftgsoftware.com ).
  27. J. Arndt, W. Hummel, “The general refractivity formula applied to densified silicate glasses,” Phys. Chem. Miner. 15, 363–369 (1988).
    [CrossRef]
  28. D. Mergel, “Modeling thin TiO2 films of various densities as an effective optical medium,” Thin Solid Films 397, 216–222 (2001).
    [CrossRef]
  29. R. Thielsch, A. Gatto, J. Heber, N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
    [CrossRef]
  30. D. Reicher, P. Black, K. Jungling, “Defect formation in hafnium dioxide thin films,” Appl. Opt. 39, 1589–1599 (2000).
    [CrossRef]

2002

D. Mergel, Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D 35, 794–801 (2002).
[CrossRef]

P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, C. Amra, “High reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002).
[CrossRef] [PubMed]

R. Thielsch, A. Gatto, J. Heber, N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

2001

D. Mergel, “Modeling thin TiO2 films of various densities as an effective optical medium,” Thin Solid Films 397, 216–222 (2001).
[CrossRef]

M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
[CrossRef]

2000

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and reflectance measurements,” Thin Solid Films 372, 149–155 (2000).
[CrossRef]

B. André, L. Poupinet, G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power laser applications,” J. Vac. Sci. Technol. A 18, 2372–2377 (2000).
[CrossRef]

D. Reicher, P. Black, K. Jungling, “Defect formation in hafnium dioxide thin films,” Appl. Opt. 39, 1589–1599 (2000).
[CrossRef]

1999

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

1998

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

1997

S. K. O’Leary, S. R. Johnson, P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82, 3334–3340 (1997).
[CrossRef]

1991

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

1990

1988

J. Arndt, W. Hummel, “The general refractivity formula applied to densified silicate glasses,” Phys. Chem. Miner. 15, 363–369 (1988).
[CrossRef]

1983

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E. 16, 1214–1222 (1983).
[CrossRef]

1959

J. Adam, M. D. Rogers, “The crystal structure of ZrO2 and HfO2,” Acta Crystallogr. 12, 951 (1959).
[CrossRef]

Adam, J.

J. Adam, M. D. Rogers, “The crystal structure of ZrO2 and HfO2,” Acta Crystallogr. 12, 951 (1959).
[CrossRef]

Ahrens, H.

H. Ahrens, “Bestimmung der Absorptionsindices und der Struktur dielektrischer Aufdampfschichten in Abhängigkeit von den Herstellungsparametern,” dissertation (Technische Universität Hannover, Hannover, Germany, 1974).

Albrand, G.

Alvisi, M.

P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, C. Amra, “High reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002).
[CrossRef] [PubMed]

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Ameziane, E. L.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and reflectance measurements,” Thin Solid Films 372, 149–155 (2000).
[CrossRef]

Amra, C.

Anderson, O.

O. Anderson, C. Ottermann, “Properties and characterization of dielectric thin films,” in Thin Films on Glass, H. Bach, D. Krause, eds. (Springer-Verlag, Berlin, 1997), pp. 165–167.

André, B.

B. André, L. Poupinet, G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power laser applications,” J. Vac. Sci. Technol. A 18, 2372–2377 (2000).
[CrossRef]

Arndt, J.

J. Arndt, W. Hummel, “The general refractivity formula applied to densified silicate glasses,” Phys. Chem. Miner. 15, 363–369 (1988).
[CrossRef]

Bennouna, A.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and reflectance measurements,” Thin Solid Films 372, 149–155 (2000).
[CrossRef]

Black, P.

Bovard, B. G.

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

Buschendorf, D.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Capone, S.

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Chahboun, N.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and reflectance measurements,” Thin Solid Films 372, 149–155 (2000).
[CrossRef]

di Giulio, M.

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Eggert, S.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Gatto, A.

P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, C. Amra, “High reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002).
[CrossRef] [PubMed]

R. Thielsch, A. Gatto, J. Heber, N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Grammes, R.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991), Sec. 6.2.

Heber, J.

R. Thielsch, A. Gatto, J. Heber, N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Hummel, W.

J. Arndt, W. Hummel, “The general refractivity formula applied to densified silicate glasses,” Phys. Chem. Miner. 15, 363–369 (1988).
[CrossRef]

Johnson, S. R.

S. K. O’Leary, S. R. Johnson, P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82, 3334–3340 (1997).
[CrossRef]

Jungling, K.

Kaiser, N.

R. Thielsch, A. Gatto, J. Heber, N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, C. Amra, “High reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002).
[CrossRef] [PubMed]

Karashanova, D.

M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
[CrossRef]

Kometai, T. Y.

Laaziz, Y.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and reflectance measurements,” Thin Solid Films 372, 149–155 (2000).
[CrossRef]

Lehan, J. P.

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

Leo, G.

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Levichkova, M.

M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
[CrossRef]

Lim, P. K.

S. K. O’Leary, S. R. Johnson, P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82, 3334–3340 (1997).
[CrossRef]

Macleod, H. A.

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

Mankov, V.

M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
[CrossRef]

Mao, Y.

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

Marrone, S. G.

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Martelli, S.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

Mednikarov, B.

M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
[CrossRef]

Mergel, D.

D. Mergel, Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D 35, 794–801 (2002).
[CrossRef]

D. Mergel, “Modeling thin TiO2 films of various densities as an effective optical medium,” Thin Solid Films 397, 216–222 (2001).
[CrossRef]

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Mirenghi, L.

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Nash, D. L.

Nassau, K.

O’Leary, S. K.

S. K. O’Leary, S. R. Johnson, P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82, 3334–3340 (1997).
[CrossRef]

Ottermann, C.

O. Anderson, C. Ottermann, “Properties and characterization of dielectric thin films,” in Thin Films on Glass, H. Bach, D. Krause, eds. (Springer-Verlag, Berlin, 1997), pp. 165–167.

Outzourhit, A.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and reflectance measurements,” Thin Solid Films 372, 149–155 (2000).
[CrossRef]

Perrone, M. R.

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Poupinet, L.

B. André, L. Poupinet, G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power laser applications,” J. Vac. Sci. Technol. A 18, 2372–2377 (2000).
[CrossRef]

Protopapa, M. L.

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Qiao, Z.

D. Mergel, Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D 35, 794–801 (2002).
[CrossRef]

Ravel, G.

B. André, L. Poupinet, G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power laser applications,” J. Vac. Sci. Technol. A 18, 2372–2377 (2000).
[CrossRef]

Reicher, D.

Rella, R.

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Rizzo, A.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Rogers, M. D.

J. Adam, M. D. Rogers, “The crystal structure of ZrO2 and HfO2,” Acta Crystallogr. 12, 951 (1959).
[CrossRef]

Samset, B.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Scaglione, S.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

Siciliano, P.

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Starbov, N.

M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
[CrossRef]

Starbova, K.

M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
[CrossRef]

Stenzel, O.

O. Stenzel, Das Dünnschichtspektrum. Ein Zugang von den Grundlagen zur Spezialliteratur (Akademie-Verlag, Berlin, 1996).

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E. 16, 1214–1222 (1983).
[CrossRef]

Thielsch, R.

R. Thielsch, A. Gatto, J. Heber, N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Torchio, P.

Valentini, A.

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Vasanelli, L.

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Wood, D. L.

Acta Crystallogr.

J. Adam, M. D. Rogers, “The crystal structure of ZrO2 and HfO2,” Acta Crystallogr. 12, 951 (1959).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

S. K. O’Leary, S. R. Johnson, P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82, 3334–3340 (1997).
[CrossRef]

J. Phys. D

D. Mergel, Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D 35, 794–801 (2002).
[CrossRef]

J. Phys. E.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E. 16, 1214–1222 (1983).
[CrossRef]

J. Vac. Sci. Technol. A

B. André, L. Poupinet, G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power laser applications,” J. Vac. Sci. Technol. A 18, 2372–2377 (2000).
[CrossRef]

S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998).
[CrossRef]

Phys. Chem. Miner.

J. Arndt, W. Hummel, “The general refractivity formula applied to densified silicate glasses,” Phys. Chem. Miner. 15, 363–369 (1988).
[CrossRef]

Surf. Coat. Technol.

M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, K. Starbova, “Structure and properties of nanosized electron beam deposited zirconia thin films,” Surf. Coat. Technol. 141, 70–77 (2001).
[CrossRef]

Thin Solid Films

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

M. Alvisi, M. di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

D. Mergel, “Modeling thin TiO2 films of various densities as an effective optical medium,” Thin Solid Films 397, 216–222 (2001).
[CrossRef]

R. Thielsch, A. Gatto, J. Heber, N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and reflectance measurements,” Thin Solid Films 372, 149–155 (2000).
[CrossRef]

Other

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 76th ed. (CRC Press, Boca Raton, Fla., 1995–1996), p. 10–302.

Silicium Teil B, Gmelins Handbuch der Anorganischen Chemie, 8th ed. (Verlag-Chemie, Weinheim1959), Part B, pp. 263 (n) and 321 (ρ).

Ref. 9, p. 4–137.

O. Anderson, C. Ottermann, “Properties and characterization of dielectric thin films,” in Thin Films on Glass, H. Bach, D. Krause, eds. (Springer-Verlag, Berlin, 1997), pp. 165–167.

Zirkonium, Gmelins Handbuch der Anorganischen Chemie, 8th ed. (Verlag-Chemie, Weinheim1958), pp. 232 (n) and 222 (ρ).

Ref. 11, p. 4–133.

Filmstar Software (FTG Software Associates, Princeton, N.J.; www.ftgsoftware.com ).

Prof. Feierabend GmbH, Lise-Meitner-Allee 4, 44801 Bochum, Germany.

O. Stenzel, Das Dünnschichtspektrum. Ein Zugang von den Grundlagen zur Spezialliteratur (Akademie-Verlag, Berlin, 1996).

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991), Sec. 6.2.

H. Ahrens, “Bestimmung der Absorptionsindices und der Struktur dielektrischer Aufdampfschichten in Abhängigkeit von den Herstellungsparametern,” dissertation (Technische Universität Hannover, Hannover, Germany, 1974).

Scout 98 software. (M. Theiss, Hard- and Software for Optical Spectroscopy, Aachen, Germany; www.mtheiss.com ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmittance spectrum of a ZrO2 sample (no additional oxygen during deposition) together with a theoretical curve obtained by fitting of the parameters of a dielectric model to the experimental data. A relatively bad fit is shown to demonstrate the difficulties of the simple one-layer model.

Fig. 2
Fig. 2

Packing density of the films as a function of the oxygen pressure pO2 during deposition. The data for ZrO2 and HfO2 are fitted with a tangens hyperbolicus, the turning point of which is given in each figure. The data (Q, an) for SiO2 are excluded from the linear fit. G and Q mean glass and quartz substrates, respectively; an and dm mean evaluation of the film thickness by the analytical method and by dielectric modeling, respectively. R2 is the correlation coefficient of the fit to the experimental data; tp denotes the turning point of the tangens hyperbolicus function used for the fit.

Fig. 3
Fig. 3

Some representative dispersion curves: SiO2, deposited at pO2 = 1 × 10−4 and 3 × 10−4 mbars; ZrO2 (3; 8 × 10−4 mbars), and HfO2 (0; × 10−4 mbars).

Fig. 4
Fig. 4

Refractive-index parameters versus packing density of the thin films. G and Q mean glass and quartz substrates, respectively. R2 is the correlation coefficient of the linear fit to the data. Crosses refer to the experimental refractive index at λ = 550 nm. The filled and open symbols represent parameter A of the Cauchy formula, Eq. (4), for films on quartz and glass, respectively.

Fig. 5
Fig. 5

Correlation of n (at 550 nm) and ρ. Crosses represent the experimental data; diamonds represent potential values for compact amorphous grains consistent with the Bruggeman relation. The pores are assumed to be filled with air or with water. Solid curves represent the general refractivity formula (GRF), Eq. (9).

Tables (3)

Tables Icon

Table 1 Range of Density and Refractive Index of Our Films

Tables Icon

Table 2 Literature Data for Compact Materials

Tables Icon

Table 3 Evaluation of Atomic-Force Micrographs of Films with Relatively Low and High Packing Densities

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n 2 = ( n 1 n 3 1 + R c 1 R c ) 1 / 2 ,
R c = 2 T 0 T c ( 1 + T 0 ) 2 T 0 + T c ( T 0 1 ) .
R = ( n 2 2 n 1 n 3 n 2 2 + n 1 n 3 ) 2 ,
n ( λ ) = A + B λ 2 + C λ 4
n ( λ ) = ( 1 + a 1 + b / λ 2 ) 1 / 2
a Z = 0.60 + 0.73 [ cm 3 / g ] ρ , b Z = 0.25 × 10 5 nm 2 ( ZrO 2 ) , a S = 0.23 + 0.43 [ cm 3 / g ] ρ , b S = 0.15 × 10 5 nm 2 ( SiO 2 ) , a H = 0.30 + 0.30 [ cm 3 / g ] ρ , b H = 0.22 × 10 5 nm 2 ( HfO 2 ) .
E loc = E + 1 3 ɛ 0 + P ( SI ) .
E loc = E + 1 ɛ 0 ( 1 3 γ 4 π ) P = E + 1 ɛ 0 ( b 4 π ) P ( SI ) .
n 2 1 n 2 + [ ( 4 π / b ) 1 ] = ( b 4 π ) 1 ɛ 0 ρ ( α M ) ( SI ) ,

Metrics