Abstract

Series of amorphous SiO2, ZrO2 and HfO2 films were prepared by electron-beam evaporation at various oxygen pressures such that the packing density varied from 0.6 to 0.82. Transmittance spectra were evaluated with respect to thickness and refractive index by application of analytical formulas to the interference extrema and by dielectric modeling. The thickness of the films ranged from 150 to 1500 nm. The coefficients of Cauchy and Sellmeier dispersion curves were determined as a function of the packing density. The mass density of the compact amorphous grains was estimated by an effective-medium theory and a general refractivity formula. It is similar to those of the crystalline materials. We used the optical data to design multilayer coatings for laser applications in a broad spectral range, including the UV.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription