Abstract

The effects of thermal annealing of titanium oxide films deposited by ion-beam assistance at annealing temperatures from 100 °C to 300 °C on the residual stress and optical properties of the films was investigated. The refractive indices and extinction coefficients increased gradually as the temperature was increased from 100 °C to 200 °C and then declined gradually as the temperature was increased further from 200 °C to 300 °C. The film lost oxygen and slowly generated lower suboxides as the annealing temperature was reduced below 200 °C, as determined by x-ray photoelectron spectroscopy (XPS). As the annealing temperature increased above 200 °C, the lower suboxides began to capture oxygen and form stable oxides. XPS measurements were made to verify both the binding energy associated with the Ti 2p line and the variation of the O 1s line. A Twyman–Green interferometer was employed for phase-shift interferometry to study the residual stress. The residual stress declined as the temperature was reduced from 100 °C to 200 °C because the lower suboxides reduced the stress in the film. Above 200 °C, the film began to capture oxygen, so the residual stress rose. At 300 °C, the film was no longer amorphous as the anatase was observed by x-ray diffraction.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, “Characteristics of thin-film dielectric material,” in Thin-Film Optical Filters, 3rd ed. (Academic, London, 2001), Chap. 15, pp. 621–627.
    [CrossRef]
  2. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
    [CrossRef] [PubMed]
  3. J. R. McNeil, A. C. Barron, S. R. Wilson, W. C. Herrmann, “Ion-assisted deposition of optical thin film: low energy versus high energy bombardment,” Appl. Opt. 23, 552–559 (1984).
    [CrossRef]
  4. J. R. McNeil, G. A. Al-Jumaily, K. C. Jungling, A. C. Barron, “Properties of TiO2 and SiO2 thin films deposited using ion assisted deposition,” Appl. Opt. 24, 486–489 (1985).
    [CrossRef]
  5. Q. Tang, K. Kikuchi, S. Ogura, H. A. Macleod, “Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A 17, 1–6 (1999).
    [CrossRef]
  6. F. M. D’Heurle, “Aluminum films deposited by rf sputtering,” Metallurg. Trans. 1, 725–732 (1970).
  7. K. H. Muller, “Stress and microstructure of sputter-deposited thin films: molecular dynamics investigations,” J. Appl. Phys. 62, 1796–1799 (1987).
    [CrossRef]
  8. F. M. D’Heurle, J. M. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering,” Thin Solid Films 171, 81–88 (1989).
    [CrossRef]
  9. J. Y. Robic, H. Leplan, Y. Paulean, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 389, 34–39 (1996).
    [CrossRef]
  10. J. C. Manifacier, J. Gasiot, J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. Eng. 9, 1002–1004 (1976).
  11. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).
    [CrossRef]
  12. C. L. Tien, C. C. Lee, C. C. Jiang, “The measurement of thin film stress using phase shifting interferometry,” J. Mod. Opt. 47, 839–849 (2000).
    [CrossRef]
  13. J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, Minn., 1995), pp. 168–169.
  14. H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
    [CrossRef]
  15. Z. Zhao, B. K. Tay, G. Yu, “Room-temperature deposition of amorphous titanium dioxide thin film with high refractive index by a filtered cathodic vacuum arc technique,” Appl. Opt. 43, 1281–1285 (2004).
    [CrossRef] [PubMed]
  16. C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photo-electrolysis,” Surf. Sci. 77, 301–320 (1978).
    [CrossRef]
  17. L. J. Meng, M. Andritschky, M. P. DosSantos, “Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films 226, 22–29 (1993).
    [CrossRef]
  18. L. J. Meng, M. Andrtschky, M. P. Dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223, 242–247 (1993).
    [CrossRef]
  19. N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
    [CrossRef]

2004

2000

C. L. Tien, C. C. Lee, C. C. Jiang, “The measurement of thin film stress using phase shifting interferometry,” J. Mod. Opt. 47, 839–849 (2000).
[CrossRef]

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

1999

Q. Tang, K. Kikuchi, S. Ogura, H. A. Macleod, “Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A 17, 1–6 (1999).
[CrossRef]

1997

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

1996

J. Y. Robic, H. Leplan, Y. Paulean, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 389, 34–39 (1996).
[CrossRef]

1993

L. J. Meng, M. Andritschky, M. P. DosSantos, “Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films 226, 22–29 (1993).
[CrossRef]

L. J. Meng, M. Andrtschky, M. P. Dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223, 242–247 (1993).
[CrossRef]

1989

F. M. D’Heurle, J. M. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering,” Thin Solid Films 171, 81–88 (1989).
[CrossRef]

1987

K. H. Muller, “Stress and microstructure of sputter-deposited thin films: molecular dynamics investigations,” J. Appl. Phys. 62, 1796–1799 (1987).
[CrossRef]

1985

1984

1983

1978

C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photo-electrolysis,” Surf. Sci. 77, 301–320 (1978).
[CrossRef]

1976

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. Eng. 9, 1002–1004 (1976).

1970

F. M. D’Heurle, “Aluminum films deposited by rf sputtering,” Metallurg. Trans. 1, 725–732 (1970).

1909

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).
[CrossRef]

Al-Jumaily, G. A.

Andritschky, M.

L. J. Meng, M. Andritschky, M. P. DosSantos, “Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films 226, 22–29 (1993).
[CrossRef]

Andrtschky, M.

L. J. Meng, M. Andrtschky, M. P. Dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223, 242–247 (1993).
[CrossRef]

Armstrong, N. R.

C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photo-electrolysis,” Surf. Sci. 77, 301–320 (1978).
[CrossRef]

Barron, A. C.

Chastain, J.

J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, Minn., 1995), pp. 168–169.

Choi, J. Y.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Choi, Y. K.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Chung, Y. D.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

D’Heurle, F. M.

F. M. D’Heurle, J. M. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering,” Thin Solid Films 171, 81–88 (1989).
[CrossRef]

F. M. D’Heurle, “Aluminum films deposited by rf sputtering,” Metallurg. Trans. 1, 725–732 (1970).

Dos Santos, M. P.

L. J. Meng, M. Andrtschky, M. P. Dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223, 242–247 (1993).
[CrossRef]

DosSantos, M. P.

L. J. Meng, M. Andritschky, M. P. DosSantos, “Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films 226, 22–29 (1993).
[CrossRef]

Fillard, J. P.

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. Eng. 9, 1002–1004 (1976).

Gasiot, J.

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. Eng. 9, 1002–1004 (1976).

Harper, J. M.

F. M. D’Heurle, J. M. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering,” Thin Solid Films 171, 81–88 (1989).
[CrossRef]

Herrmann, W. C.

Jang, H. K.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Jeong, K.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Jiang, C. C.

C. L. Tien, C. C. Lee, C. C. Jiang, “The measurement of thin film stress using phase shifting interferometry,” J. Mod. Opt. 47, 839–849 (2000).
[CrossRef]

Jungling, K. C.

Kikuchi, K.

Q. Tang, K. Kikuchi, S. Ogura, H. A. Macleod, “Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A 17, 1–6 (1999).
[CrossRef]

Kim, G. H.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Kim, T. K.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

King, R. C.

J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, Minn., 1995), pp. 168–169.

Lee, C. C.

C. L. Tien, C. C. Lee, C. C. Jiang, “The measurement of thin film stress using phase shifting interferometry,” J. Mod. Opt. 47, 839–849 (2000).
[CrossRef]

Lee, H.-S.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Lee, Y. S.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Leplan, H.

J. Y. Robic, H. Leplan, Y. Paulean, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 389, 34–39 (1996).
[CrossRef]

Macleod, H. A.

Q. Tang, K. Kikuchi, S. Ogura, H. A. Macleod, “Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A 17, 1–6 (1999).
[CrossRef]

P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
[CrossRef] [PubMed]

H. A. Macleod, “Characteristics of thin-film dielectric material,” in Thin-Film Optical Filters, 3rd ed. (Academic, London, 2001), Chap. 15, pp. 621–627.
[CrossRef]

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. Eng. 9, 1002–1004 (1976).

Martin, N.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Martin, P. J.

McNeil, J. R.

Meng, L. J.

L. J. Meng, M. Andrtschky, M. P. Dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223, 242–247 (1993).
[CrossRef]

L. J. Meng, M. Andritschky, M. P. DosSantos, “Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films 226, 22–29 (1993).
[CrossRef]

Mercier, R.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Muller, K. H.

K. H. Muller, “Stress and microstructure of sputter-deposited thin films: molecular dynamics investigations,” J. Appl. Phys. 62, 1796–1799 (1987).
[CrossRef]

Netterfield, R. P.

Ogura, S.

Q. Tang, K. Kikuchi, S. Ogura, H. A. Macleod, “Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A 17, 1–6 (1999).
[CrossRef]

Pacey, C. G.

Palmino, F.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Paulean, Y.

J. Y. Robic, H. Leplan, Y. Paulean, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 389, 34–39 (1996).
[CrossRef]

Rafin, B.

J. Y. Robic, H. Leplan, Y. Paulean, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 389, 34–39 (1996).
[CrossRef]

Robic, J. Y.

J. Y. Robic, H. Leplan, Y. Paulean, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 389, 34–39 (1996).
[CrossRef]

Rondot, D.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Rousselot, C.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Sainty, W. G.

Sayers, C. N.

C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photo-electrolysis,” Surf. Sci. 77, 301–320 (1978).
[CrossRef]

Stoney, G. G.

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).
[CrossRef]

Tang, Q.

Q. Tang, K. Kikuchi, S. Ogura, H. A. Macleod, “Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A 17, 1–6 (1999).
[CrossRef]

Tay, B. K.

Tien, C. L.

C. L. Tien, C. C. Lee, C. C. Jiang, “The measurement of thin film stress using phase shifting interferometry,” J. Mod. Opt. 47, 839–849 (2000).
[CrossRef]

Whang, C. N.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Whangbo, S. W.

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Wilson, S. R.

Yu, G.

Zhao, Z.

Appl. Opt.

J. Appl. Phys.

K. H. Muller, “Stress and microstructure of sputter-deposited thin films: molecular dynamics investigations,” J. Appl. Phys. 62, 1796–1799 (1987).
[CrossRef]

J. Mod. Opt.

C. L. Tien, C. C. Lee, C. C. Jiang, “The measurement of thin film stress using phase shifting interferometry,” J. Mod. Opt. 47, 839–849 (2000).
[CrossRef]

J. Phys. Eng.

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. Eng. 9, 1002–1004 (1976).

J. Vac. Sci. Technol. A

Q. Tang, K. Kikuchi, S. Ogura, H. A. Macleod, “Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A 17, 1–6 (1999).
[CrossRef]

H. K. Jang, S. W. Whangbo, Y. K. Choi, Y. D. Chung, K. Jeong, C. N. Whang, Y. S. Lee, H.-S. Lee, J. Y. Choi, G. H. Kim, T. K. Kim, “Titanium oxide films on Si (100) deposited by e-beam evaporation,” J. Vac. Sci. Technol. A 18, 2932–2936 (2000).
[CrossRef]

Metallurg. Trans.

F. M. D’Heurle, “Aluminum films deposited by rf sputtering,” Metallurg. Trans. 1, 725–732 (1970).

Proc. R. Soc. London Ser. A

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).
[CrossRef]

Surf. Sci.

C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photo-electrolysis,” Surf. Sci. 77, 301–320 (1978).
[CrossRef]

Thin Solid Films

L. J. Meng, M. Andritschky, M. P. DosSantos, “Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films 226, 22–29 (1993).
[CrossRef]

L. J. Meng, M. Andrtschky, M. P. Dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films 223, 242–247 (1993).
[CrossRef]

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

F. M. D’Heurle, J. M. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering,” Thin Solid Films 171, 81–88 (1989).
[CrossRef]

J. Y. Robic, H. Leplan, Y. Paulean, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 389, 34–39 (1996).
[CrossRef]

Other

J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, Minn., 1995), pp. 168–169.

H. A. Macleod, “Characteristics of thin-film dielectric material,” in Thin-Film Optical Filters, 3rd ed. (Academic, London, 2001), Chap. 15, pp. 621–627.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Variation of the residual stress of a TiO2 thin film (270-nm physical thickness) during thermal annealing from 100 °C to 300 °C.

Fig. 2
Fig. 2

Transmittance spectra obtained at various thermal annealing temperatures.

Fig. 3
Fig. 3

Refractive index at various thermal annealing temperatures: the refractive index rose with temperature from 100 °C to 200 °C and decreased as the temperature increased further from 200 °C to 300 °C.

Fig. 4
Fig. 4

Extinction coefficients at various thermal annealing temperatures: the extinction coefficient increased with temperature from 100 °C to 200 °C and decreased as the temperature increased further from 200 °C to 300 °C.

Fig. 5
Fig. 5

XPS spectra of TiO2 films annealed at various temperatures: the binding energy between Ti 2p1/2 and 2p3/2 varied from 5.7 to 5.9 eV at 200 °C but decreased to 5.6 eV at 300 °C.

Fig. 6
Fig. 6

O 1s varied from 1.25N to 0.82N at 200 °C and increased to 1.52N at 300 °C.

Fig. 7
Fig. 7

X-ray diffraction of TiO2 thin as-deposited film and of films deposited at 250 °C and 300 °C. At 300 °C a distinct anatase [Ana.] (101) peak can be observed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ f = E s t s 2 6 ( 1 υ s ) t f R ,

Metrics