Abstract

An artificial compound-eye objective fabricated by micro-optics technology is adapted and attached to a CMOS sensor array. The novel optical sensor system with an optics thickness of only 0.2 mm is examined with respect to resolution and sensitivity. An optical resolution of 60 × 60 pixels is determined from captured images. The scaling behavior of artificial compound-eye imaging systems is analyzed. Cross talk between channels fabricated by different technologies is evaluated, and the influence on an extension of the field of view by addition of a (Fresnel) diverging lens is discussed. The lithographic generation of opaque walls between channels for optical isolation is experimentally demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Land, D.-E. Nilsson, Animal Eyes, Oxford Animal Biology Series, P. Willmer, D. Norman, eds. (Oxford U. Press, Oxford, UK2002).
  2. J. S. Sanders, ed., Selected Papers on Natural and Artificial Compound Eye Sensors, SPIE Milestone Series MS122 (SPIE, Bellingham, Wash., 1996).
  3. J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
    [CrossRef]
  4. K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3, 264–268 (1996).
    [CrossRef]
  5. S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
    [CrossRef]
  6. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, “Thin observation module by bound optics (tombo) concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [CrossRef]
  7. K. Hoshino, F. Mura, I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” IEEE J. Microelectromech. Syst. 9, 32–37 (2000).
    [CrossRef]
  8. K. Umeda, M. Sekine, “Simple compound-eye-type micro vision sensor and its application for detecting motion,” J. Robot. Mechatron. 14, 193–198 (2002).
  9. R. Völkel, M. Eisner, K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
    [CrossRef]
  10. M. C. Hutley, R. Hunt, R. F. Stevens, P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
    [CrossRef]
  11. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, A. Tünnermann, “Artificial apposition compound eye—fabricated by micro-optics technology,” Appl. Opt. 43, (2004).
    [CrossRef]
  12. P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
    [CrossRef]
  13. R. Fischer, B. Tadic-Galeb, Optical System Design (McGraw-Hill, New York, 2000).
  14. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989).
    [CrossRef] [PubMed]
  15. A. W. Snyder, D. G. Stavenga, S. B. Laughlin, “Spatial information capacity of compound eyes,” J. Comp. Physiol. A 116, 183–207 (1977).
    [CrossRef]
  16. A. W. Snyder, “Acuity of compound eyes: physical limitations and design,” J. Comp. Physiol. A 116, 161–182 (1977).
    [CrossRef]
  17. R. McCluney, Introduction to Radiometry and Photometry (Artech, Boston, 1994).
  18. K. Kirschfeld, “The absolute sensitivity of lens and compound eyes,” Z. Naturforsch. 29, 592–596 (1974).
  19. Z. D. Popovich, R. A. Sprague, G. A. N. Conell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef]
  20. P. Dannberg, G. Mann, L. Wagner, A. Bräuer, “Polymer UV-molding for micro-optical systems and O/E-integration,” in Micromachining for Micro-Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE4179, 137–145 (2000).
    [CrossRef]
  21. H. Naumann, G. Schröder, Bauelemente der Optik—Taschenbuch der technischen Optik, 6th ed. (Hanser, München, 1992).
  22. I. N. Bronstein, K. A. Semandjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, Frankfurt, Germany, 1995).
  23. R. Rumpf, E. Johnson, “Micro-photonic systems utilizing SU-8,” in MOEMS and Miniaturized Systems IV, El-Fatatry, ed. Proc. SPIE5346, 64–72 (2004).
    [CrossRef]
  24. M. Shaw, D. Nawrocki, R. Hurditch, D. Johnson, Improving the Process Capability of SU-8 (Springer, Berlin, 2003) Vol. 10, 1–6.

2004

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, A. Tünnermann, “Artificial apposition compound eye—fabricated by micro-optics technology,” Appl. Opt. 43, (2004).
[CrossRef]

2003

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

R. Völkel, M. Eisner, K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

2002

K. Umeda, M. Sekine, “Simple compound-eye-type micro vision sensor and its application for detecting motion,” J. Robot. Mechatron. 14, 193–198 (2002).

2001

2000

K. Hoshino, F. Mura, I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” IEEE J. Microelectromech. Syst. 9, 32–37 (2000).
[CrossRef]

1996

K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3, 264–268 (1996).
[CrossRef]

1995

J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
[CrossRef]

1994

M. C. Hutley, R. Hunt, R. F. Stevens, P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

1989

1988

1977

A. W. Snyder, D. G. Stavenga, S. B. Laughlin, “Spatial information capacity of compound eyes,” J. Comp. Physiol. A 116, 183–207 (1977).
[CrossRef]

A. W. Snyder, “Acuity of compound eyes: physical limitations and design,” J. Comp. Physiol. A 116, 161–182 (1977).
[CrossRef]

1974

K. Kirschfeld, “The absolute sensitivity of lens and compound eyes,” Z. Naturforsch. 29, 592–596 (1974).

Bräuer, A.

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, A. Tünnermann, “Artificial apposition compound eye—fabricated by micro-optics technology,” Appl. Opt. 43, (2004).
[CrossRef]

P. Dannberg, G. Mann, L. Wagner, A. Bräuer, “Polymer UV-molding for micro-optical systems and O/E-integration,” in Micromachining for Micro-Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE4179, 137–145 (2000).
[CrossRef]

Bronstein, I. N.

I. N. Bronstein, K. A. Semandjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, Frankfurt, Germany, 1995).

Burgi, P.-Y.

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

Conell, G. A. N.

Dannberg, P.

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, A. Tünnermann, “Artificial apposition compound eye—fabricated by micro-optics technology,” Appl. Opt. 43, (2004).
[CrossRef]

P. Dannberg, G. Mann, L. Wagner, A. Bräuer, “Polymer UV-molding for micro-optical systems and O/E-integration,” in Micromachining for Micro-Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE4179, 137–145 (2000).
[CrossRef]

Duparré, J.

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, A. Tünnermann, “Artificial apposition compound eye—fabricated by micro-optics technology,” Appl. Opt. 43, (2004).
[CrossRef]

Eisner, M.

R. Völkel, M. Eisner, K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Fischer, R.

R. Fischer, B. Tadic-Galeb, Optical System Design (McGraw-Hill, New York, 2000).

Grenet, E.

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

Gyger, S.

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

Halford, C. E.

J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
[CrossRef]

Hamanaka, K.

K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3, 264–268 (1996).
[CrossRef]

Heim, P.

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

Heitger, F.

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

Hoshino, K.

K. Hoshino, F. Mura, I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” IEEE J. Microelectromech. Syst. 9, 32–37 (2000).
[CrossRef]

Hunt, R.

M. C. Hutley, R. Hunt, R. F. Stevens, P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Hurditch, R.

M. Shaw, D. Nawrocki, R. Hurditch, D. Johnson, Improving the Process Capability of SU-8 (Springer, Berlin, 2003) Vol. 10, 1–6.

Hutley, M. C.

M. C. Hutley, R. Hunt, R. F. Stevens, P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Ishida, J.

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

Johnson, D.

M. Shaw, D. Nawrocki, R. Hurditch, D. Johnson, Improving the Process Capability of SU-8 (Springer, Berlin, 2003) Vol. 10, 1–6.

Johnson, E.

R. Rumpf, E. Johnson, “Micro-photonic systems utilizing SU-8,” in MOEMS and Miniaturized Systems IV, El-Fatatry, ed. Proc. SPIE5346, 64–72 (2004).
[CrossRef]

Kaess, F.

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

Kirschfeld, K.

K. Kirschfeld, “The absolute sensitivity of lens and compound eyes,” Z. Naturforsch. 29, 592–596 (1974).

Koshi, H.

K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3, 264–268 (1996).
[CrossRef]

Kumagai, T.

Land, M. F.

M. F. Land, D.-E. Nilsson, Animal Eyes, Oxford Animal Biology Series, P. Willmer, D. Norman, eds. (Oxford U. Press, Oxford, UK2002).

Laughlin, S. B.

A. W. Snyder, D. G. Stavenga, S. B. Laughlin, “Spatial information capacity of compound eyes,” J. Comp. Physiol. A 116, 183–207 (1977).
[CrossRef]

Lohmann, A. W.

Mann, G.

P. Dannberg, G. Mann, L. Wagner, A. Bräuer, “Polymer UV-molding for micro-optical systems and O/E-integration,” in Micromachining for Micro-Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE4179, 137–145 (2000).
[CrossRef]

McCluney, R.

R. McCluney, Introduction to Radiometry and Photometry (Artech, Boston, 1994).

Miyatake, S.

Mühlig, H.

I. N. Bronstein, K. A. Semandjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, Frankfurt, Germany, 1995).

Mura, F.

K. Hoshino, F. Mura, I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” IEEE J. Microelectromech. Syst. 9, 32–37 (2000).
[CrossRef]

Musiol, G.

I. N. Bronstein, K. A. Semandjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, Frankfurt, Germany, 1995).

Naumann, H.

H. Naumann, G. Schröder, Bauelemente der Optik—Taschenbuch der technischen Optik, 6th ed. (Hanser, München, 1992).

Nawrocki, D.

M. Shaw, D. Nawrocki, R. Hurditch, D. Johnson, Improving the Process Capability of SU-8 (Springer, Berlin, 2003) Vol. 10, 1–6.

Nilsson, D.-E.

M. F. Land, D.-E. Nilsson, Animal Eyes, Oxford Animal Biology Series, P. Willmer, D. Norman, eds. (Oxford U. Press, Oxford, UK2002).

Nussbaum, P.

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

Ogata, S.

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

Popovich, Z. D.

Rüedi, P.-F.

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

Rumpf, R.

R. Rumpf, E. Johnson, “Micro-photonic systems utilizing SU-8,” in MOEMS and Miniaturized Systems IV, El-Fatatry, ed. Proc. SPIE5346, 64–72 (2004).
[CrossRef]

Sanders, J. S.

J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
[CrossRef]

Sasano, T.

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

Savander, P.

M. C. Hutley, R. Hunt, R. F. Stevens, P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Schreiber, P.

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, A. Tünnermann, “Artificial apposition compound eye—fabricated by micro-optics technology,” Appl. Opt. 43, (2004).
[CrossRef]

Schröder, G.

H. Naumann, G. Schröder, Bauelemente der Optik—Taschenbuch der technischen Optik, 6th ed. (Hanser, München, 1992).

Sekine, M.

K. Umeda, M. Sekine, “Simple compound-eye-type micro vision sensor and its application for detecting motion,” J. Robot. Mechatron. 14, 193–198 (2002).

Semandjajew, K. A.

I. N. Bronstein, K. A. Semandjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, Frankfurt, Germany, 1995).

Shaw, M.

M. Shaw, D. Nawrocki, R. Hurditch, D. Johnson, Improving the Process Capability of SU-8 (Springer, Berlin, 2003) Vol. 10, 1–6.

Shimoyama, I.

K. Hoshino, F. Mura, I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” IEEE J. Microelectromech. Syst. 9, 32–37 (2000).
[CrossRef]

Snyder, A. W.

A. W. Snyder, D. G. Stavenga, S. B. Laughlin, “Spatial information capacity of compound eyes,” J. Comp. Physiol. A 116, 183–207 (1977).
[CrossRef]

A. W. Snyder, “Acuity of compound eyes: physical limitations and design,” J. Comp. Physiol. A 116, 161–182 (1977).
[CrossRef]

Sprague, R. A.

Stavenga, D. G.

A. W. Snyder, D. G. Stavenga, S. B. Laughlin, “Spatial information capacity of compound eyes,” J. Comp. Physiol. A 116, 183–207 (1977).
[CrossRef]

Stevens, R. F.

M. C. Hutley, R. Hunt, R. F. Stevens, P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Tadic-Galeb, B.

R. Fischer, B. Tadic-Galeb, Optical System Design (McGraw-Hill, New York, 2000).

Tanida, J.

Tünnermann, A.

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, A. Tünnermann, “Artificial apposition compound eye—fabricated by micro-optics technology,” Appl. Opt. 43, (2004).
[CrossRef]

Umeda, K.

K. Umeda, M. Sekine, “Simple compound-eye-type micro vision sensor and its application for detecting motion,” J. Robot. Mechatron. 14, 193–198 (2002).

Völkel, R.

R. Völkel, M. Eisner, K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Wagner, L.

P. Dannberg, G. Mann, L. Wagner, A. Bräuer, “Polymer UV-molding for micro-optical systems and O/E-integration,” in Micromachining for Micro-Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE4179, 137–145 (2000).
[CrossRef]

Weible, K. J.

R. Völkel, M. Eisner, K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Yamada, K.

Appl. Opt.

IEEE J. Microelectromech. Syst.

K. Hoshino, F. Mura, I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” IEEE J. Microelectromech. Syst. 9, 32–37 (2000).
[CrossRef]

IEEE J. Solid-State Circuits

P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, P. Nussbaum, “A 128 × 128 pixels 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction,” IEEE J. Solid-State Circuits 38, 2325–2333 (2003).
[CrossRef]

J. Comp. Physiol. A

A. W. Snyder, D. G. Stavenga, S. B. Laughlin, “Spatial information capacity of compound eyes,” J. Comp. Physiol. A 116, 183–207 (1977).
[CrossRef]

A. W. Snyder, “Acuity of compound eyes: physical limitations and design,” J. Comp. Physiol. A 116, 161–182 (1977).
[CrossRef]

J. Robot. Mechatron.

K. Umeda, M. Sekine, “Simple compound-eye-type micro vision sensor and its application for detecting motion,” J. Robot. Mechatron. 14, 193–198 (2002).

Microelectron. Eng.

R. Völkel, M. Eisner, K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Opt. Eng.

J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
[CrossRef]

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

Opt. Rev.

K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev. 3, 264–268 (1996).
[CrossRef]

Pure Appl. Opt.

M. C. Hutley, R. Hunt, R. F. Stevens, P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Z. Naturforsch.

K. Kirschfeld, “The absolute sensitivity of lens and compound eyes,” Z. Naturforsch. 29, 592–596 (1974).

Other

R. Fischer, B. Tadic-Galeb, Optical System Design (McGraw-Hill, New York, 2000).

R. McCluney, Introduction to Radiometry and Photometry (Artech, Boston, 1994).

M. F. Land, D.-E. Nilsson, Animal Eyes, Oxford Animal Biology Series, P. Willmer, D. Norman, eds. (Oxford U. Press, Oxford, UK2002).

J. S. Sanders, ed., Selected Papers on Natural and Artificial Compound Eye Sensors, SPIE Milestone Series MS122 (SPIE, Bellingham, Wash., 1996).

P. Dannberg, G. Mann, L. Wagner, A. Bräuer, “Polymer UV-molding for micro-optical systems and O/E-integration,” in Micromachining for Micro-Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE4179, 137–145 (2000).
[CrossRef]

H. Naumann, G. Schröder, Bauelemente der Optik—Taschenbuch der technischen Optik, 6th ed. (Hanser, München, 1992).

I. N. Bronstein, K. A. Semandjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, Frankfurt, Germany, 1995).

R. Rumpf, E. Johnson, “Micro-photonic systems utilizing SU-8,” in MOEMS and Miniaturized Systems IV, El-Fatatry, ed. Proc. SPIE5346, 64–72 (2004).
[CrossRef]

M. Shaw, D. Nawrocki, R. Hurditch, D. Johnson, Improving the Process Capability of SU-8 (Springer, Berlin, 2003) Vol. 10, 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic side view of the two artificial apposition compound-eye imaging systems. (a) Objective without opaque walls between channels attached to CMOS sensor array. A, replicated microlens array; B, thin glass substrate; C, metal layer with pinhole array; D, CMOS sensor array. (b) Objective with opaque walls between channels for prevention of cross talk. A, replicated microlens array; B*, high-aspect-ratio photopolymer with included opaque walls; C, metal layer with pinhole array; E, thick supporting substrate.

Fig. 2
Fig. 2

Principle of a planar artificial apposition compound-eye objective. The thin monolithic device is composed of an array of microlenses with diameter D, focal length f, and pitch pL on the front side of a spacing structure and a pinhole array with pinhole diameters d and pitch pP in the microlenses’ focal plane on the spacing structures’ back side. The optical axes and thus the channels directions of view are directed outward owing to a pitch difference pLpP of the microlens and pinhole arrays, which results in the interommatidial angle ΔΦ. The acceptance angle Δφ of a channel is determined by the ratio of the pinhole diameter d and the focal length f, and diffraction effects of the microlens apertures are determined by λ/D, where λ stands for the wavelength of light. Δφ is a measure for the solid angle in the object space, which is represented by the optical system as one image point. To prevent cross talk between adjacent channels (oblique ray demonstrates the ghost-effect), optical isolation between channels must be implemented in the spacing structure in the form of opaque walls.

Fig. 3
Fig. 3

Wafer with 5 × 5 ultrathin objectives before singularization, imaging a picture of sunflower. Objectives with varying pinholes sizes and also objectives with equal pitches of microlens and pinhole arrays resulting in a 1× magnification are realized.

Fig. 4
Fig. 4

Diced artificial compound-eye objective (a) in comparison to 1 Euro cent and (b) attached to a sensor array.

Fig. 5
Fig. 5

(a), (c), (d) Test images captured by the artificial compound-eye camera and (b) with a bulk objective lens for comparison (a) Radial star pattern with 16 LP filling the FOV of the 0.2-mm thin artificial apposition compound-eye camera (pinhole diameter 2 µm). A cutoff resolution at 32 LP/FOV can be determined, resulting in a resolution of 3.6 LP/mm or 1.5 LP/deg. The black and white dots are due to random data transmission errors in the sensors’ ethernet communication with the PC. The vacuum gripper for holding the objective over the sensor array sometimes appears in one of the captured test images’ corners. (b) The same test pattern was also recorded with a bulk objective lens for 1/3-in. image format with a focal length of 12 mm and an f-number of 2.0. In this case the resolution is limited by the sensor’s Nyquist frequency to 64 LP/FOV. (c) Image of a portrait photograph of Carl Zeiss. (d) Example of imaged bar targets for MTF determination.

Fig. 6
Fig. 6

Capabilities of sensor array for close-to-the pixel analogous computation of (a) contrast and (b) edge orientation (false-color coded).

Fig. 7
Fig. 7

MTF of compound-eye camera with pinhole diameter as parameter.

Fig. 8
Fig. 8

Test images captured by the artificial compound-eye camera for examination of cross talk and extension of the FOV by an additional diverging Fresnel lens. (a) Radial star pattern imaged under approximately half the objective’s FOV angle of incidence. A ghost image of the test pattern part that is outside the objective’s FOV appears on the opposite side of the image. The real image is the upper part; the ghost image is the lower part. Here the camera is glued to the sensor. (b) Generation of an angular FOV for an objective without pitch difference between microlens and pinhole arrays (1× magnification) by attaching a Fresnel lens of focal length −21.6 mm. The resulting FOV of the device is 23° × 23°. (c) Image of radial star pattern with an angular extension of 28° (Ø) captured with an objective with microlens and pinhole arrays differing in pitch but without the additional Fresnel lens. (d) Implementation of the additional Fresnel lens in same setup results in a camera FOV of approximately 42° × 42°. Ghost images of the 28° (Ø) test pattern appear on the sides because of cross talk between channels.

Fig. 9
Fig. 9

Fabrication of system including opaque walls. (a) Micrograph of a side view of transparent columns of photopolymer, which are structured with a high aspect ratio in SU8, forming the bulk structure of the optical channels. (b) Gaps are filled with absorbing polymer cast (front view). (c) The microlens array is replicated on top (front view).

Fig. 10
Fig. 10

Test images captured by the artificial compound-eye objective with included opaque walls. White dots are mask defects. (a) Radial star pattern imaged under approximately half the objective’s FOV angle of incidence. No ghost image appears [compare with Fig. 8(a)]. (b) Radial star pattern, centered within the objective’s FOV. (c) Image of radial star pattern with angular extension of 28° (Ø) using an objective with microlens and pinhole arrays differing in pitch but without the additional Fresnel lens. (d) Implementation of the Fresnel lens of focal length −21.6 mm in same setup extends the FOV of the objective to approximately 38° × 38°. Ghost images of the 28° (Ø) test pattern on the sides of the image are suppressed [compare with Fig. 8(d)].

Fig. 11
Fig. 11

Compound-eye objective with chirped microlens array. (a) Array of aspherical off-axis microlens segments, where channel-dependent decentration within the channel is used. (b) Each channel’s viewing direction is individually tuned by means of the microlens segment’s decentration. A pitch difference between microlens and detector arrays is not necessary. The microlenses are individually corrected with respect to aberrations for their working angle of incidence. The resulting FOV here is 30° × 30°.

Tables (3)

Tables Icon

Table 1 Scaling of Angular Resolution (1/Δφ), Sensitivity (PI/IO), FOV, and Volume (V) versus the Geometrical Parameters of the Microlenses

Tables Icon

Table 2 Parameters of Fabricated Artificial Apposition Compound-Eye Objectivesa

Tables Icon

Table 3 Measured Sensitivity of Compound-Eye Camera Normalized to Use of Bulk Objective with the Same Sensor Array and Bare Pixels

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = [ ( d f ) 2 + ( λ D ) 2 ] 1 / 2 .
Res FOV = FOV / Δ φ .
P I / I O = τ NA 2 π d 2 4 ,
SFR = π 4 2 A 1 A 0 .
tan ( α ) = S / 2 F .

Metrics