Abstract

We have demonstrated simultaneous generation of stable picosecond laser pulses at five close wavelengths at a pulse repetition rate of ∼2 GHz by using a self-seeding configuration that consisted of a gain-switched Fabry–Perot laser diode (FPLD) with an external cavity formed by a tunable spectrum-split fiber Bragg grating (FBG). The FBG selected only one of the modes of the FPLD and, at the same time, filtered the selected FPLD mode such that the reflection from the FBG, tapped with a directional coupler, provided an output of dual-wavelength pulses and the transmission through the FBG provided an output of three-wavelength pulses. We could change the intensities and the wavelength separations of the pulses by adjusting the modulating radio frequency and the temperature of the FPLD and the separation of the FBG reflection peaks. In our experiments the highest side-mode suppression ratios of the pulses obtained were 44.5 dB for the dual-wavelength output and 25.0 dB for the three-wavelength output. Also, the laser was demonstrated to minimize pulse intensity imbalance and produce equally separated wavelengths (with a wavelength separation of 0.2 nm). This simple laser offers considerable flexibility for various applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
    [CrossRef]
  2. K. L. Lee, C. Shu, “Alternate and simultaneous generation of 1-GHz dual-wavelength pulses from an electrically tunable harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 12, 624–626 (2000).
    [CrossRef]
  3. O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
    [CrossRef]
  4. G. E. Town, L. Chen, P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
    [CrossRef]
  5. S. Yang, Z. Li, S. Yuan, X. Dong, Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett. 14, 1494–1496 (2002).
    [CrossRef]
  6. D. Pudo, L. R. Chen, D. Giannone, L. Zhang, I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,”IEEE Photon. Technol. Lett. 14, 143–145 (2002).
    [CrossRef]
  7. S. Li, K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
    [CrossRef]
  8. Y. Zhao, C. Shu, “Selectable dual-wavelength pulses generated from a laser diode using external feedback from a two-chromatic fiber grating,” Appl. Phys. Lett. 73, 2402–2404 (1998).
    [CrossRef]
  9. S. Li, K. T. Chan, Y. Liu, L. Zhang, I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
    [CrossRef]
  10. Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses with close wavelength separation from a self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 15, 1452–1454 (2003).
    [CrossRef]
  11. Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1742–1744 (2004).
    [CrossRef]
  12. M. Zhang, D. N. Wang, H. Li, W. Jin, M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry–Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett. 14, 92–94 (2002).
    [CrossRef]
  13. D. N. Wang, X. Fang, “Mutual pulse injection-seeding scheme by the use of two Fabry–Perot laser diodes for tunable dual-wavelength optical short-pulse generation,” Appl. Phys. Lett. 82, 3829–3831 (2003).
    [CrossRef]
  14. Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostric-tive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
    [CrossRef]
  15. M. Schell, W. Utz, D. Hubse, J. Kassner, D. Bimberg, “Low jitter single-mode pulse generation by a self-seeded, gain-switched Fabry–Perot semiconductor laser,” Appl. Phys. Lett. 65, 3045–3047 (1994).
    [CrossRef]
  16. D. Huhse, M. Schell, W. Utz, J. Kassner, D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry– Perot laser diode,” IEEE Photon. Technol. Lett. 7, 351–353 (1995).
    [CrossRef]
  17. L. P. Barry, R. F. O'Dowd, J. Debau, R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
    [CrossRef]
  18. L. P. Barry, P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
    [CrossRef]

2004 (2)

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostric-tive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

2003 (2)

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses with close wavelength separation from a self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 15, 1452–1454 (2003).
[CrossRef]

D. N. Wang, X. Fang, “Mutual pulse injection-seeding scheme by the use of two Fabry–Perot laser diodes for tunable dual-wavelength optical short-pulse generation,” Appl. Phys. Lett. 82, 3829–3831 (2003).
[CrossRef]

2002 (3)

M. Zhang, D. N. Wang, H. Li, W. Jin, M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry–Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett. 14, 92–94 (2002).
[CrossRef]

S. Yang, Z. Li, S. Yuan, X. Dong, Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett. 14, 1494–1496 (2002).
[CrossRef]

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,”IEEE Photon. Technol. Lett. 14, 143–145 (2002).
[CrossRef]

2000 (2)

K. L. Lee, C. Shu, “Alternate and simultaneous generation of 1-GHz dual-wavelength pulses from an electrically tunable harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 12, 624–626 (2000).
[CrossRef]

G. E. Town, L. Chen, P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

1999 (3)

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

S. Li, K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
[CrossRef]

L. P. Barry, P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

1998 (3)

Y. Zhao, C. Shu, “Selectable dual-wavelength pulses generated from a laser diode using external feedback from a two-chromatic fiber grating,” Appl. Phys. Lett. 73, 2402–2404 (1998).
[CrossRef]

S. Li, K. T. Chan, Y. Liu, L. Zhang, I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
[CrossRef]

1995 (1)

D. Huhse, M. Schell, W. Utz, J. Kassner, D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry– Perot laser diode,” IEEE Photon. Technol. Lett. 7, 351–353 (1995).
[CrossRef]

1994 (1)

M. Schell, W. Utz, D. Hubse, J. Kassner, D. Bimberg, “Low jitter single-mode pulse generation by a self-seeded, gain-switched Fabry–Perot semiconductor laser,” Appl. Phys. Lett. 65, 3045–3047 (1994).
[CrossRef]

1993 (1)

L. P. Barry, R. F. O'Dowd, J. Debau, R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Anandarajah, P.

L. P. Barry, P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

Barry, L. P.

L. P. Barry, P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

L. P. Barry, R. F. O'Dowd, J. Debau, R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Bennion, I.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,”IEEE Photon. Technol. Lett. 14, 143–145 (2002).
[CrossRef]

S. Li, K. T. Chan, Y. Liu, L. Zhang, I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Bimberg, D.

D. Huhse, M. Schell, W. Utz, J. Kassner, D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry– Perot laser diode,” IEEE Photon. Technol. Lett. 7, 351–353 (1995).
[CrossRef]

M. Schell, W. Utz, D. Hubse, J. Kassner, D. Bimberg, “Low jitter single-mode pulse generation by a self-seeded, gain-switched Fabry–Perot semiconductor laser,” Appl. Phys. Lett. 65, 3045–3047 (1994).
[CrossRef]

Blondel, M.

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Boittin, R.

L. P. Barry, R. F. O'Dowd, J. Debau, R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Chan, K. T.

S. Li, K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
[CrossRef]

S. Li, K. T. Chan, Y. Liu, L. Zhang, I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
[CrossRef]

Chen, L.

G. E. Town, L. Chen, P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

Chen, L. R.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,”IEEE Photon. Technol. Lett. 14, 143–145 (2002).
[CrossRef]

Chiang, K. S.

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostric-tive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses with close wavelength separation from a self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 15, 1452–1454 (2003).
[CrossRef]

Chu, P. L.

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostric-tive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses with close wavelength separation from a self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 15, 1452–1454 (2003).
[CrossRef]

Debau, J.

L. P. Barry, R. F. O'Dowd, J. Debau, R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Demokan, M. S.

M. Zhang, D. N. Wang, H. Li, W. Jin, M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry–Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett. 14, 92–94 (2002).
[CrossRef]

Depairs, O.

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Dong, X.

S. Yang, Z. Li, S. Yuan, X. Dong, Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett. 14, 1494–1496 (2002).
[CrossRef]

Fang, X.

D. N. Wang, X. Fang, “Mutual pulse injection-seeding scheme by the use of two Fabry–Perot laser diodes for tunable dual-wavelength optical short-pulse generation,” Appl. Phys. Lett. 82, 3829–3831 (2003).
[CrossRef]

Feinberg, J.

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Giannone, D.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,”IEEE Photon. Technol. Lett. 14, 143–145 (2002).
[CrossRef]

Hubse, D.

M. Schell, W. Utz, D. Hubse, J. Kassner, D. Bimberg, “Low jitter single-mode pulse generation by a self-seeded, gain-switched Fabry–Perot semiconductor laser,” Appl. Phys. Lett. 65, 3045–3047 (1994).
[CrossRef]

Huhse, D.

D. Huhse, M. Schell, W. Utz, J. Kassner, D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry– Perot laser diode,” IEEE Photon. Technol. Lett. 7, 351–353 (1995).
[CrossRef]

Jin, W.

M. Zhang, D. N. Wang, H. Li, W. Jin, M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry–Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett. 14, 92–94 (2002).
[CrossRef]

Kassner, J.

D. Huhse, M. Schell, W. Utz, J. Kassner, D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry– Perot laser diode,” IEEE Photon. Technol. Lett. 7, 351–353 (1995).
[CrossRef]

M. Schell, W. Utz, D. Hubse, J. Kassner, D. Bimberg, “Low jitter single-mode pulse generation by a self-seeded, gain-switched Fabry–Perot semiconductor laser,” Appl. Phys. Lett. 65, 3045–3047 (1994).
[CrossRef]

Kiyan, R.

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Lee, K. L.

K. L. Lee, C. Shu, “Alternate and simultaneous generation of 1-GHz dual-wavelength pulses from an electrically tunable harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 12, 624–626 (2000).
[CrossRef]

Li, H.

M. Zhang, D. N. Wang, H. Li, W. Jin, M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry–Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett. 14, 92–94 (2002).
[CrossRef]

Li, S.

S. Li, K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
[CrossRef]

S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
[CrossRef]

S. Li, K. T. Chan, Y. Liu, L. Zhang, I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Li, Z.

S. Yang, Z. Li, S. Yuan, X. Dong, Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett. 14, 1494–1496 (2002).
[CrossRef]

Liu, Y.

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostric-tive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses with close wavelength separation from a self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 15, 1452–1454 (2003).
[CrossRef]

S. Li, K. T. Chan, Y. Liu, L. Zhang, I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Megret, P.

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

O'Dowd, R. F.

L. P. Barry, R. F. O'Dowd, J. Debau, R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Pottiez, O.

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Pudo, D.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,”IEEE Photon. Technol. Lett. 14, 143–145 (2002).
[CrossRef]

Salik, E.

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Schell, M.

D. Huhse, M. Schell, W. Utz, J. Kassner, D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry– Perot laser diode,” IEEE Photon. Technol. Lett. 7, 351–353 (1995).
[CrossRef]

M. Schell, W. Utz, D. Hubse, J. Kassner, D. Bimberg, “Low jitter single-mode pulse generation by a self-seeded, gain-switched Fabry–Perot semiconductor laser,” Appl. Phys. Lett. 65, 3045–3047 (1994).
[CrossRef]

Shu, C.

K. L. Lee, C. Shu, “Alternate and simultaneous generation of 1-GHz dual-wavelength pulses from an electrically tunable harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 12, 624–626 (2000).
[CrossRef]

Y. Zhao, C. Shu, “Selectable dual-wavelength pulses generated from a laser diode using external feedback from a two-chromatic fiber grating,” Appl. Phys. Lett. 73, 2402–2404 (1998).
[CrossRef]

Smith, P. W. E.

G. E. Town, L. Chen, P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

Starodubov, D.

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

Town, G. E.

G. E. Town, L. Chen, P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

Utz, W.

D. Huhse, M. Schell, W. Utz, J. Kassner, D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry– Perot laser diode,” IEEE Photon. Technol. Lett. 7, 351–353 (1995).
[CrossRef]

M. Schell, W. Utz, D. Hubse, J. Kassner, D. Bimberg, “Low jitter single-mode pulse generation by a self-seeded, gain-switched Fabry–Perot semiconductor laser,” Appl. Phys. Lett. 65, 3045–3047 (1994).
[CrossRef]

Wang, D. N.

D. N. Wang, X. Fang, “Mutual pulse injection-seeding scheme by the use of two Fabry–Perot laser diodes for tunable dual-wavelength optical short-pulse generation,” Appl. Phys. Lett. 82, 3829–3831 (2003).
[CrossRef]

M. Zhang, D. N. Wang, H. Li, W. Jin, M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry–Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett. 14, 92–94 (2002).
[CrossRef]

Yang, S.

S. Yang, Z. Li, S. Yuan, X. Dong, Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett. 14, 1494–1496 (2002).
[CrossRef]

Yuan, S.

S. Yang, Z. Li, S. Yuan, X. Dong, Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett. 14, 1494–1496 (2002).
[CrossRef]

Zhang, L.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,”IEEE Photon. Technol. Lett. 14, 143–145 (2002).
[CrossRef]

S. Li, K. T. Chan, Y. Liu, L. Zhang, I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Zhang, M.

M. Zhang, D. N. Wang, H. Li, W. Jin, M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry–Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett. 14, 92–94 (2002).
[CrossRef]

Zhao, Q.

S. Yang, Z. Li, S. Yuan, X. Dong, Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett. 14, 1494–1496 (2002).
[CrossRef]

Zhao, Y.

Y. Zhao, C. Shu, “Selectable dual-wavelength pulses generated from a laser diode using external feedback from a two-chromatic fiber grating,” Appl. Phys. Lett. 73, 2402–2404 (1998).
[CrossRef]

Appl. Phys. Lett. (4)

S. Li, K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956 (1998).
[CrossRef]

Y. Zhao, C. Shu, “Selectable dual-wavelength pulses generated from a laser diode using external feedback from a two-chromatic fiber grating,” Appl. Phys. Lett. 73, 2402–2404 (1998).
[CrossRef]

M. Schell, W. Utz, D. Hubse, J. Kassner, D. Bimberg, “Low jitter single-mode pulse generation by a self-seeded, gain-switched Fabry–Perot semiconductor laser,” Appl. Phys. Lett. 65, 3045–3047 (1994).
[CrossRef]

D. N. Wang, X. Fang, “Mutual pulse injection-seeding scheme by the use of two Fabry–Perot laser diodes for tunable dual-wavelength optical short-pulse generation,” Appl. Phys. Lett. 82, 3829–3831 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (14)

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostric-tive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

D. Huhse, M. Schell, W. Utz, J. Kassner, D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry– Perot laser diode,” IEEE Photon. Technol. Lett. 7, 351–353 (1995).
[CrossRef]

L. P. Barry, R. F. O'Dowd, J. Debau, R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

L. P. Barry, P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

S. Li, K. T. Chan, Y. Liu, L. Zhang, I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses with close wavelength separation from a self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 15, 1452–1454 (2003).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

M. Zhang, D. N. Wang, H. Li, W. Jin, M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry–Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett. 14, 92–94 (2002).
[CrossRef]

K. L. Lee, C. Shu, “Alternate and simultaneous generation of 1-GHz dual-wavelength pulses from an electrically tunable harmonically mode-locked fiber laser,” IEEE Photon. Technol. Lett. 12, 624–626 (2000).
[CrossRef]

O. Depairs, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, “Round-trip time and dispersion optimization in a dual-wavelength actively modelocked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 1238–1240 (1999).
[CrossRef]

G. E. Town, L. Chen, P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

S. Yang, Z. Li, S. Yuan, X. Dong, Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett. 14, 1494–1496 (2002).
[CrossRef]

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,”IEEE Photon. Technol. Lett. 14, 143–145 (2002).
[CrossRef]

S. Li, K. T. Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photon. Technol. Lett. 11, 179–181 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Experimental setup for a self-seeded FPLD for the generation of picosecond pulses at five close wavelengths. (b) The reflection spectrum of a FBG with two reflection peaks (solid curve) falls within the gain profile of a FPLD mode (dashed curve). (c) The single-mode spectrum of the FPLD after the spectrum has been filtered by the FBG.

Fig. 2
Fig. 2

Reflection and transmission spectra of the FBG when the separation of the reflection peaks was 0.40 nm.

Fig. 3
Fig. 3

Characteristics of the pulses measured from output 2 when the separation of the FBG reflection peaks was 0.44 nm: (a), (b) spectra and (c), (d) pulses from the laser; (e), (f) pulses after traveling through a 12-km SMF.

Fig. 4
Fig. 4

Characteristics of the dual-wavelength pulses measured from output 1 when the separation of the FBG reflection peaks was 0.44 nm: (a), (b) spectra; (c), (d) pulses from the laser.

Fig. 5
Fig. 5

Characteristics of the three-wavelength pulses measured from output 3 when the separation of the FBG reflection peaks was 0.44 nm: (a), (b) spectra; (c), (d) pulses from the laser; (e), (f) pulses after traveling through a 12-km single-mode fiber.

Fig. 6
Fig. 6

Characteristics of the pulses measured from output 3 and output 1 when the separation of the FBG reflection peaks was 0.37 nm: (a) spectrum measured from output 3; (b) spectrum measured from output 1; (c) pulses from output 3 after traveling through a 12-km single-mode fiber; (d) pulses from output 1.

Fig. 7
Fig. 7

Characteristics of the pulses measured from output 3 and output 1 when the separation of the FBG reflection peaks was 0.40 nm: (a) spectrum measured from output 3; (b) spectrum measured from output 1; (c) pulses from output 3 after traveling through a 12-km single-mode fiber; (d) pulses from output 1.

Metrics