Abstract

A direct-absorption spectrometer, based on a pulsed, distributed feedback, quantum cascade laser with a 10.26-µm wavelength and an astigmatic Herriott cell with a 66-m path length, has been developed for high-resolution IR spectroscopy. This spectrometer utilizes the intrapulse method, an example of sweep integration, in which the almost linear wavelength up-chirp obtained from a distributed feedback, quantum cascade laser yields a spectral microwindow of as many as 2.5 wave numbers/cm−1. Within this spectral microwindow, molecular fingerprints can be monitored and recorded in real time. This system allows both the detection of carbon dioxide and ethylene and the real-time observation of the evolution of these gases in the exhaust by-products from several cars.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
    [CrossRef]
  2. D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
    [CrossRef]
  3. M. Nagele, M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).
    [CrossRef]
  4. A. A. Kosterev, F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
    [CrossRef]
  5. D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
    [CrossRef]
  6. S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
    [CrossRef]
  7. J. S. Yu, S. Slivken, L. Doris, M. Razeghi, “High-power continuous-wave operation of a 6-µm quantum cascade laser at room temperature,” Appl. Phys. Lett. 83, 2503–2505 (2003).
    [CrossRef]
  8. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
    [CrossRef]
  9. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum cascade laser,” Opt. Lett. 23, 219–221 (1998).
    [CrossRef]
  10. E. Normand, M. McCulloch, G. Duxbury, N. Langford, “Fast, real-time spectrometer based on a pulsed quantum cascade laser,” Opt. Lett. 28, 16–18 (2003).
    [CrossRef] [PubMed]
  11. M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003).
    [CrossRef]
  12. G. Baumbach, Air Quality Control (Springer-Verlag, Berlin, 1996), Chap. 2.1.6.
    [CrossRef]
  13. R. G. Derwent, M. E. Jenkin, S. M. Saunders, “Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions,” Atmos. Environ. 30, 181–199 (1996).
    [CrossRef]
  14. G. Baumbach, Air Quality Control (Springer-Verlag, Berlin, 1996), Chap.7.3.3.
    [CrossRef]
  15. J. Kaspar, P. Fornasiero, N. Hickey, “Automotive catalytic converters: current status and some perspectives,” Catal. Today 77, 419–449 (2003).
    [CrossRef]
  16. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [CrossRef] [PubMed]
  17. Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
    [CrossRef]
  18. T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, “Linewidth measurements of free-running, pulsed, distributed-feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551–4554 (2004).
    [CrossRef]
  19. T. A. Blake, S. W. Sharpe, R. L. Sams, Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (personal communication, 2003).
  20. R. R. Ernst, “Sensitivity enhancement in magnetic resonance,” in Advances in Magnetic Resonance, Vol. II, J. S. Waugh, ed. (Academic, New York, 1966), pp. 1–135.
    [CrossRef]
  21. M. T. McCulloch, N. Langford, G. Duxbury, “Observation of rapid passage induced saturation in the 10.25 µm spectrum of ethylene using a frequency chirped quantum cascade laser,” Mol. Phys., submitted for publication.
  22. E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
    [CrossRef]
  23. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  24. W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
    [CrossRef]
  25. A. G. Maki, J. S. Wells, “Wave-number calibration tables from heterodyne frequency measurements (version 1.3),” http://physics.nist.gov/wavenum (4February2003);originally published as NIST Spec. Publ. 821 (National Institute of Standards and Technology, Gaithersburg, Md., 1987).
  26. S. Schilt, L. Thevenaz, E. Courtois, P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta Part A 58, 2533–2539 (2002).
    [CrossRef]
  27. R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
    [CrossRef]
  28. D. Wiedmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, F. K. Tittel, “Monitoring of ethylene by a pulsed quantum-cascade laser,” Appl. Opt. 43, 3329–3334 (2004).
    [CrossRef]

2004 (3)

T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, “Linewidth measurements of free-running, pulsed, distributed-feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551–4554 (2004).
[CrossRef]

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

D. Wiedmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, F. K. Tittel, “Monitoring of ethylene by a pulsed quantum-cascade laser,” Appl. Opt. 43, 3329–3334 (2004).
[CrossRef]

2003 (7)

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

E. Normand, M. McCulloch, G. Duxbury, N. Langford, “Fast, real-time spectrometer based on a pulsed quantum cascade laser,” Opt. Lett. 28, 16–18 (2003).
[CrossRef] [PubMed]

M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003).
[CrossRef]

J. Kaspar, P. Fornasiero, N. Hickey, “Automotive catalytic converters: current status and some perspectives,” Catal. Today 77, 419–449 (2003).
[CrossRef]

D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
[CrossRef]

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

J. S. Yu, S. Slivken, L. Doris, M. Razeghi, “High-power continuous-wave operation of a 6-µm quantum cascade laser at room temperature,” Appl. Phys. Lett. 83, 2503–2505 (2003).
[CrossRef]

2002 (4)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

A. A. Kosterev, F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

S. Schilt, L. Thevenaz, E. Courtois, P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta Part A 58, 2533–2539 (2002).
[CrossRef]

2001 (2)

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

2000 (1)

M. Nagele, M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).
[CrossRef]

1999 (1)

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

1998 (2)

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1996 (1)

R. G. Derwent, M. E. Jenkin, S. M. Saunders, “Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions,” Atmos. Environ. 30, 181–199 (1996).
[CrossRef]

1995 (1)

Aellen, T.

D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
[CrossRef]

Anders, S.

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

Baillargeon, J. N.

Baren, R. E.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Baumbach, G.

G. Baumbach, Air Quality Control (Springer-Verlag, Berlin, 1996), Chap. 2.1.6.
[CrossRef]

G. Baumbach, Air Quality Control (Springer-Verlag, Berlin, 1996), Chap.7.3.3.
[CrossRef]

Beck, M.

D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
[CrossRef]

Becker, C.

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

Beyer, T.

T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, “Linewidth measurements of free-running, pulsed, distributed-feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551–4554 (2004).
[CrossRef]

Blake, T. A.

T. A. Blake, S. W. Sharpe, R. L. Sams, Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (personal communication, 2003).

Blaser, S.

D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
[CrossRef]

Blass, W. E.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Braun, M.

T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, “Linewidth measurements of free-running, pulsed, distributed-feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551–4554 (2004).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Cai, S.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Capasso, F.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Cho, A. Y.

Courtois, E.

S. Schilt, L. Thevenaz, E. Courtois, P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta Part A 58, 2533–2539 (2002).
[CrossRef]

Curl, R. F.

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Daunt, S. J.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Derwent, R. G.

R. G. Derwent, M. E. Jenkin, S. M. Saunders, “Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions,” Atmos. Environ. 30, 181–199 (1996).
[CrossRef]

Doris, L.

J. S. Yu, S. Slivken, L. Doris, M. Razeghi, “High-power continuous-wave operation of a 6-µm quantum cascade laser at room temperature,” Appl. Phys. Lett. 83, 2503–2505 (2003).
[CrossRef]

Drummond, J. R.

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

Duxbury, G.

E. Normand, M. McCulloch, G. Duxbury, N. Langford, “Fast, real-time spectrometer based on a pulsed quantum cascade laser,” Opt. Lett. 28, 16–18 (2003).
[CrossRef] [PubMed]

M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003).
[CrossRef]

M. T. McCulloch, N. Langford, G. Duxbury, “Observation of rapid passage induced saturation in the 10.25 µm spectrum of ethylene using a frequency chirped quantum cascade laser,” Mol. Phys., submitted for publication.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ernst, R. R.

R. R. Ernst, “Sensitivity enhancement in magnetic resonance,” in Advances in Magnetic Resonance, Vol. II, J. S. Waugh, ed. (Academic, New York, 1966), pp. 1–135.
[CrossRef]

Ewing, A. C.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Faist, J.

Fayt, A.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Flesch, G. J.

Fornasiero, P.

J. Kaspar, P. Fornasiero, N. Hickey, “Automotive catalytic converters: current status and some perspectives,” Catal. Today 77, 419–449 (2003).
[CrossRef]

Fraser, M. P.

Fried, A.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gini, E.

D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
[CrossRef]

Gmachl, C.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gornik, E.

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

Hager, J. S.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Hartwig, S.

T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, “Linewidth measurements of free-running, pulsed, distributed-feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551–4554 (2004).
[CrossRef]

Harward, C. N.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Henry, B.

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

Hickey, N.

J. Kaspar, P. Fornasiero, N. Hickey, “Automotive catalytic converters: current status and some perspectives,” Catal. Today 77, 419–449 (2003).
[CrossRef]

Hillman, J. J.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Hofstetter, D.

D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
[CrossRef]

Hutchinson, A. L.

Jenkin, M. E.

R. G. Derwent, M. E. Jenkin, S. M. Saunders, “Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions,” Atmos. Environ. 30, 181–199 (1996).
[CrossRef]

Jennings, L. W.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kaspar, J.

J. Kaspar, P. Fornasiero, N. Hickey, “Automotive catalytic converters: current status and some perspectives,” Catal. Today 77, 419–449 (2003).
[CrossRef]

Kebabian, P. L.

Kelly, K. K.

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

Kosterev, A. A.

D. Wiedmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, F. K. Tittel, “Monitoring of ethylene by a pulsed quantum-cascade laser,” Appl. Opt. 43, 3329–3334 (2004).
[CrossRef]

A. A. Kosterev, F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

Lambrecht, A.

T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, “Linewidth measurements of free-running, pulsed, distributed-feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551–4554 (2004).
[CrossRef]

Langford, N.

M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003).
[CrossRef]

E. Normand, M. McCulloch, G. Duxbury, N. Langford, “Fast, real-time spectrometer based on a pulsed quantum cascade laser,” Opt. Lett. 28, 16–18 (2003).
[CrossRef] [PubMed]

M. T. McCulloch, N. Langford, G. Duxbury, “Observation of rapid passage induced saturation in the 10.25 µm spectrum of ethylene using a frequency chirped quantum cascade laser,” Mol. Phys., submitted for publication.

Mahan, S. L.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

May, R. D.

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCulloch, M.

McCulloch, M. T.

M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003).
[CrossRef]

M. T. McCulloch, N. Langford, G. Duxbury, “Observation of rapid passage induced saturation in the 10.25 µm spectrum of ethylene using a frequency chirped quantum cascade laser,” Mol. Phys., submitted for publication.

McLauchlin, R. J.

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

McManus, J. B.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
[CrossRef] [PubMed]

Nagele, M.

M. Nagele, M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).
[CrossRef]

Namjou, K.

Nelson, D. D.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Newnham, D. A.

M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003).
[CrossRef]

Normand, E.

Normand, E. L.

M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003).
[CrossRef]

Parrish, M. E.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Pflugl, C.

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

Razeghi, M.

J. S. Yu, S. Slivken, L. Doris, M. Razeghi, “High-power continuous-wave operation of a 6-µm quantum cascade laser at room temperature,” Appl. Phys. Lett. 83, 2503–2505 (2003).
[CrossRef]

Reuter, D. C.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Richard, E. C.

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

Richter, D.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Robert, P. A.

S. Schilt, L. Thevenaz, E. Courtois, P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta Part A 58, 2533–2539 (2002).
[CrossRef]

Roller, C.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sams, R. L.

T. A. Blake, S. W. Sharpe, R. L. Sams, Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (personal communication, 2003).

Saunders, S. M.

R. G. Derwent, M. E. Jenkin, S. M. Saunders, “Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions,” Atmos. Environ. 30, 181–199 (1996).
[CrossRef]

Schilt, S.

S. Schilt, L. Thevenaz, E. Courtois, P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta Part A 58, 2533–2539 (2002).
[CrossRef]

Schmeltekopf, A. L.

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

Schrenk, W.

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Scott, D. C.

Senesac, L. R.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Shafer, K. H.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Sharpe, S. W.

T. A. Blake, S. W. Sharpe, R. L. Sams, Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (personal communication, 2003).

Shi, Q.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Sigrist, M. W.

M. Nagele, M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).
[CrossRef]

Sirota, M.

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Sirtori, C.

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

Sivco, D. L.

Slivken, S.

J. S. Yu, S. Slivken, L. Doris, M. Razeghi, “High-power continuous-wave operation of a 6-µm quantum cascade laser at room temperature,” Appl. Phys. Lett. 83, 2503–2505 (2003).
[CrossRef]

Strasser, G.

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

Swanson, J. E.

Thevenaz, L.

S. Schilt, L. Thevenaz, E. Courtois, P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta Part A 58, 2533–2539 (2002).
[CrossRef]

Thompson, T. L.

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

Tittel, F. K.

D. Wiedmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, F. K. Tittel, “Monitoring of ethylene by a pulsed quantum-cascade laser,” Appl. Opt. 43, 3329–3334 (2004).
[CrossRef]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

A. A. Kosterev, F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

Tuck, A. F.

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Walega, J. G.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webster, C. R.

Wert, B. P.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

Whittaker, E. A.

Wiedmann, D.

Wilson, R.

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

Winkler, R. H.

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

Woodward, W. S.

Yarekha, D. A.

D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Yu, J. S.

J. S. Yu, S. Slivken, L. Doris, M. Razeghi, “High-power continuous-wave operation of a 6-µm quantum cascade laser at room temperature,” Appl. Phys. Lett. 83, 2503–2505 (2003).
[CrossRef]

Zahniser, M. S.

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
[CrossRef] [PubMed]

Anal. Chem. (1)

Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (3)

E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002).
[CrossRef]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

M. Nagele, M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

J. S. Yu, S. Slivken, L. Doris, M. Razeghi, “High-power continuous-wave operation of a 6-µm quantum cascade laser at room temperature,” Appl. Phys. Lett. 83, 2503–2505 (2003).
[CrossRef]

Atmos. Environ. (1)

R. G. Derwent, M. E. Jenkin, S. M. Saunders, “Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions,” Atmos. Environ. 30, 181–199 (1996).
[CrossRef]

Catal. Today (1)

J. Kaspar, P. Fornasiero, N. Hickey, “Automotive catalytic converters: current status and some perspectives,” Catal. Today 77, 419–449 (2003).
[CrossRef]

Electron. Lett. (1)

D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003).
[CrossRef]

IEE Proc. Optoelectron. (1)

S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. A. Kosterev, F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

J. Appl. Phys. (1)

T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, “Linewidth measurements of free-running, pulsed, distributed-feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551–4554 (2004).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001).
[CrossRef]

Opt. Lett. (2)

Opt. Soc. Am. B (1)

M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003).
[CrossRef]

Spectrochim. Acta Part A (3)

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

S. Schilt, L. Thevenaz, E. Courtois, P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta Part A 58, 2533–2539 (2002).
[CrossRef]

R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004).
[CrossRef]

Other (6)

A. G. Maki, J. S. Wells, “Wave-number calibration tables from heterodyne frequency measurements (version 1.3),” http://physics.nist.gov/wavenum (4February2003);originally published as NIST Spec. Publ. 821 (National Institute of Standards and Technology, Gaithersburg, Md., 1987).

G. Baumbach, Air Quality Control (Springer-Verlag, Berlin, 1996), Chap.7.3.3.
[CrossRef]

T. A. Blake, S. W. Sharpe, R. L. Sams, Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (personal communication, 2003).

R. R. Ernst, “Sensitivity enhancement in magnetic resonance,” in Advances in Magnetic Resonance, Vol. II, J. S. Waugh, ed. (Academic, New York, 1966), pp. 1–135.
[CrossRef]

M. T. McCulloch, N. Langford, G. Duxbury, “Observation of rapid passage induced saturation in the 10.25 µm spectrum of ethylene using a frequency chirped quantum cascade laser,” Mol. Phys., submitted for publication.

G. Baumbach, Air Quality Control (Springer-Verlag, Berlin, 1996), Chap. 2.1.6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the apparatus. The multipass cell is an astigmatic Herriott cell used with 134 traversals, giving a path length of 66 m.

Fig. 2
Fig. 2

Comparison of a portion of (a) a high-resolution Fourier-transform spectra of ethylene with (b) the same region recorded with a QC-laser spectrometer. (a) High-resolution absorption spectrum of ethylene recorded by T. A. Blake, R. L. Sams, and S. W. Sharpe in the Environmental Molecular Science Laboratory at Pacific Northwest National Laboratory, Richland, Washington. The gas pressure is 4.98 Torr, and the path length is 15 cm. (1) Absorbance with a maximum resolution of 0.002 cm−1. The absorption lines are labeled from (i) to (viii), and their assignments are in Table 1. (2) The spectrum broadened to a half-width of 0.12 cm−1 to match the effective resolution of the QC-laser spectrometer. The series of lines, (ii) to (iv), are only partially resolved at this resolution and in the QC-laser spectra. (b) Spectrum of 2.1-mTorr ethylene recorded with the QC-laser spectrometer with a path length of 66 m. (1) Pure gas. (2) Broadened with nitrogen, the total pressure in the cell is 35 Torr. The rapid passage signals, characterized by a rapid transition from absorption to apparent emission when observed at (1) low pressure are quenched when nitrogen is admitted, leading to (2) a conventional pressure broadened line shape at a total pressure in the cell of 35 Torr.

Fig. 3
Fig. 3

Portion of the 7.84-µm spectrum of nitrous oxide used to demonstrate the variation of the signal to noise and sensitivity of the spectrometer as a function of the number of averages employed. In an ideal system with N averages, the signal-to-noise ratio should be improved by N. The pressure in the Herriott cell is 0.5 mTorr, and the path length is 110 m. The identification of the absorption lines of nitrous oxide is in Table 2. (a) Spectra recorded by using (i) 2 and (ii) 256 averages; the improvement in the signal to noise is close to that predicted of a factor of 11. Only line (1) can be identified with 2 averages, whereas the closely spaced doublet (2), each line of which is ∼15 times weaker, may be easily detected in spectrum (ii). (b) Expanded section of the spectrum recorded with (ii) 256, (iii) 1024, and (iv) 4100 averages. The improvement in the signal to noise from (ii) to (iv) is close to the expected value of 4. (c) Greatly expanded section of the spectrum to demonstrate the ability of the spectrometer to clearly detect very weak absorption at the maximum number of averages permitted by the Aqiris digitizer, 64,000. The traces correspond to (iv) 4100, (v) 16,400, and (vi) 64,000. Weak lines (3) and (4) seen in traces (iv) and (v) have an intensity approximately 430 times weaker than line 1 and are first seen in trace (v), which has a theoretical signal-to-noise improvement of 90 times spectrum (i) and in trace (vi) where the improvement is 179 times. Since we have shown that this detectivity can be maintained when the total cell pressure is ∼35, this leads to an upper limit of detection sensitivity for nitrous oxide with an average of 16,400 scans and a path length of 110 m, 1.2 × 10−3 mTorr in 35-Torr total cell pressure, or 0.03 ppm.

Fig. 4
Fig. 4

Comparison of a pressure-broadened spectrum of ethylene and that of the exhaust gas of a Renault Clio car. The identities of the absorption lines are in Table 1. All spectra are recorded at a total cell pressure of ∼35 Torr. (a) The spectra in the region from 973.7 to 973.2 cm−1 are compared early in the emission process when the ethylene concentration is large and where the concentration of the carbon dioxide in the exhaust region changes slowly. Delay times: open circles, 15 s; solid diagonal square, 40 s; open triangles, 60 s. (b) Spectra of line (v) at longer delay times: solid squares, 80 s; solid diagonal squares, 90 s; solid triangles, 110 s; open circles, 120 s. The weak ethylene absorption seen at 110 s corresponds to a detectivity of ∼1.5 ppm.

Fig. 5
Fig. 5

Time dependence of the mixing ratios of ethylene and of carbon dioxide in the exhaust gases of a Renault Clio petrol engined car. Note the disappearance of ethylene after approximately 110 s.

Fig. 6
Fig. 6

Time dependence of the mixing ratios of ethylene and of carbon dioxide in the exhaust gases of a Honda s2000 car. Note that unlike the pattern in the Renault Clio, Fig. 5, high concentrations of ethylene persist at long delay times.

Fig. 7
Fig. 7

Time dependence of the mixing ratios of ethylene and of carbon dioxide in the exhaust gases of a BMW 318i car. In contrast with the emissions from the previous cars, the time dependences of the emittance profiles of ethylene and carbon dioxide are almost identical.

Tables (2)

Tables Icon

Table 1 Positions, Assignments, and Intensities of the Vibration–Rotation Transitions of the ν7 Band of Ethylenea,b and of the 00°1 – 10°0 Band of Carbon Dioxidea Observed within the Tuning Range of the 10.25-µm QC Laser, 973.2–974.4 cm−1

Tables Icon

Table 2 Positions, Assignments, and Intensities of the Vibration–Rotation Transitions of the ν3 Band of Nitrous Oxidea Observed within the Tuning Range of the 7.84-µm QC Laser, 1277–1274.6 cm−1

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J K a K c
J K a K c

Metrics