Abstract

For three decades airborne laser-induced fluorescence has demonstrated value for chlorophyll biomass retrieval in wide-area oceanic field experiments, satellite validation, and algorithm development. A new chlorophyll biomass retrieval theory is developed using laser-induced and water Raman normalized fluorescence of both (a) chlorophyll and (b) chromophoric dissolved organic matter (CDOM). This airborne lidar retrieval theory is then independently confirmed by chlorophyll biomass obtained from concurrent (1) ship-cruise retrievals, (2) satellite inherent optical property (IOP) biomass retrievals, and (3) satellite standard band-ratio chlorophyll biomass retrievals. The new airborne lidar chlorophyll and CDOM fluorescence-based chlorophyll biomass retrieval is found to be more robust than prior lidar methods that used chlorophyll fluorescence only. Future research is recommended to further explain the underlying influence of CDOM on chlorophyll production.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Kim, “New algae mapping technique by the use of an airborne laser fluorosensor,” Appl. Opt. 12, 1454–1459 (1973).
    [CrossRef] [PubMed]
  2. M. P. F. Bristow, D. Nielsen, D. Bundy, F. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
    [CrossRef] [PubMed]
  3. J. W. Campbell, W. E. Esaias, “Spatial patterns in temperature and chlorophyll on Nantucket Shoals from airborne remote sensing data, May 7–9, 1981,” J. Mar. Res. 43, 139–161 (1985).
    [CrossRef]
  4. F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
    [CrossRef] [PubMed]
  5. F. E. Hoge, R. N. Swift, “Airborne dual-laser excitation and mapping of phytoplankton photopigments in a gulf stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
    [CrossRef] [PubMed]
  6. F. E. Hoge, R. N. Swift, “Airborne mapping of laser-induced fluorescence of chlorophyll a and phycoerythrin in a Gulf Stream warm core ring,” in Mapping Strategies in Chemical Oceanography, Advances in Chemistry Series No. 209, A. Zirino, ed. (American Chemical Society, Washington, D.C., 1985), paper 18, pp. 335–372.
  7. F. E. Hoge, R. E. Berry, R. N. Swift, “Active-passive airborne ocean color measurement: 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
    [CrossRef]
  8. F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement: 2. Applications,” Appl. Opt. 25, 48–57 (1986).
    [CrossRef]
  9. F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sens. Environ. 34, 19–25 (1990).
    [CrossRef]
  10. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
    [CrossRef]
  11. F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
    [CrossRef] [PubMed]
  12. F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
    [CrossRef]
  13. F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
    [CrossRef] [PubMed]
  14. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31138 (2001).
    [CrossRef]
  15. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
    [CrossRef]
  16. P. E. Lyon, F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties,” Appl. Opt. 43, 5886–5892 (2004).
    [CrossRef] [PubMed]
  17. M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
    [CrossRef]
  18. A. M. Ciotti, J. J. Cullen, M. R. Lewis, “A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color,” J. Geophys. Res. 104, 1559–1578 (1999).
    [CrossRef]
  19. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynthesis Res. 66, 33–44 (2000).
    [CrossRef]
  20. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, Robert N. Swift, J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynthesis Res. 66, 45–56 (2000).
    [CrossRef]
  21. E. J. Rochelle-Newall, T. R. Fisher, C. Fan, P. M. Glibert, “Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms,” Int. J. Remote Sens. 20, 627–641 (1999).
    [CrossRef]
  22. E. J. Rochelle-Newall, T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
    [CrossRef]
  23. E. J. Rochelle-Newall, T. R. Fisher, “Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay,” Mar. Chem. 77, 23–41 (2002).
    [CrossRef]
  24. M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
    [CrossRef]
  25. N. Malinsky-Rushansky, T. Berman, T. Berner, Y. Z. Yacobi, Z. Dubinsky, “Physiological characteristics of picophytoplankton isolated from Lake Kinneret: responses to light and temperature,” J. Plankton Res. 24, 1173–1183 (2002).
    [CrossRef]

2004 (1)

2002 (4)

E. J. Rochelle-Newall, T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
[CrossRef]

E. J. Rochelle-Newall, T. R. Fisher, “Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay,” Mar. Chem. 77, 23–41 (2002).
[CrossRef]

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

N. Malinsky-Rushansky, T. Berman, T. Berner, Y. Z. Yacobi, Z. Dubinsky, “Physiological characteristics of picophytoplankton isolated from Lake Kinneret: responses to light and temperature,” J. Plankton Res. 24, 1173–1183 (2002).
[CrossRef]

2001 (1)

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31138 (2001).
[CrossRef]

2000 (2)

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynthesis Res. 66, 33–44 (2000).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, Robert N. Swift, J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynthesis Res. 66, 45–56 (2000).
[CrossRef]

1999 (4)

E. J. Rochelle-Newall, T. R. Fisher, C. Fan, P. M. Glibert, “Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms,” Int. J. Remote Sens. 20, 627–641 (1999).
[CrossRef]

A. M. Ciotti, J. J. Cullen, M. R. Lewis, “A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color,” J. Geophys. Res. 104, 1559–1578 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

1996 (1)

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

1995 (2)

1993 (1)

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

1990 (1)

F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sens. Environ. 34, 19–25 (1990).
[CrossRef]

1986 (2)

1985 (1)

J. W. Campbell, W. E. Esaias, “Spatial patterns in temperature and chlorophyll on Nantucket Shoals from airborne remote sensing data, May 7–9, 1981,” J. Mar. Res. 43, 139–161 (1985).
[CrossRef]

1983 (1)

1981 (2)

1973 (1)

Behrenfeld, M. J.

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Berman, T.

N. Malinsky-Rushansky, T. Berman, T. Berner, Y. Z. Yacobi, Z. Dubinsky, “Physiological characteristics of picophytoplankton isolated from Lake Kinneret: responses to light and temperature,” J. Plankton Res. 24, 1173–1183 (2002).
[CrossRef]

Berner, T.

N. Malinsky-Rushansky, T. Berman, T. Berner, Y. Z. Yacobi, Z. Dubinsky, “Physiological characteristics of picophytoplankton isolated from Lake Kinneret: responses to light and temperature,” J. Plankton Res. 24, 1173–1183 (2002).
[CrossRef]

Berry, R. E.

Blough, N. V.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Bristow, M. P. F.

Bruce, E. J.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

Bundy, D.

Campbell, J. W.

J. W. Campbell, W. E. Esaias, “Spatial patterns in temperature and chlorophyll on Nantucket Shoals from airborne remote sensing data, May 7–9, 1981,” J. Mar. Res. 43, 139–161 (1985).
[CrossRef]

Chekalyuk, A. M.

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynthesis Res. 66, 33–44 (2000).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, Robert N. Swift, J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynthesis Res. 66, 45–56 (2000).
[CrossRef]

Ciotti, A. M.

A. M. Ciotti, J. J. Cullen, M. R. Lewis, “A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color,” J. Geophys. Res. 104, 1559–1578 (1999).
[CrossRef]

Cullen, J. J.

A. M. Ciotti, J. J. Cullen, M. R. Lewis, “A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color,” J. Geophys. Res. 104, 1559–1578 (1999).
[CrossRef]

DeGrandpre, M. D.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

Dubinsky, Z.

N. Malinsky-Rushansky, T. Berman, T. Berner, Y. Z. Yacobi, Z. Dubinsky, “Physiological characteristics of picophytoplankton isolated from Lake Kinneret: responses to light and temperature,” J. Plankton Res. 24, 1173–1183 (2002).
[CrossRef]

Esaias, W. E.

J. W. Campbell, W. E. Esaias, “Spatial patterns in temperature and chlorophyll on Nantucket Shoals from airborne remote sensing data, May 7–9, 1981,” J. Mar. Res. 43, 139–161 (1985).
[CrossRef]

Fan, C.

E. J. Rochelle-Newall, T. R. Fisher, C. Fan, P. M. Glibert, “Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms,” Int. J. Remote Sens. 20, 627–641 (1999).
[CrossRef]

Fisher, T. R.

E. J. Rochelle-Newall, T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
[CrossRef]

E. J. Rochelle-Newall, T. R. Fisher, “Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay,” Mar. Chem. 77, 23–41 (2002).
[CrossRef]

E. J. Rochelle-Newall, T. R. Fisher, C. Fan, P. M. Glibert, “Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms,” Int. J. Remote Sens. 20, 627–641 (1999).
[CrossRef]

Furtek, F.

Glibert, P. M.

E. J. Rochelle-Newall, T. R. Fisher, C. Fan, P. M. Glibert, “Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms,” Int. J. Remote Sens. 20, 627–641 (1999).
[CrossRef]

Hoge, F. E.

P. E. Lyon, F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties,” Appl. Opt. 43, 5886–5892 (2004).
[CrossRef] [PubMed]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31138 (2001).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, Robert N. Swift, J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynthesis Res. 66, 45–56 (2000).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynthesis Res. 66, 33–44 (2000).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sens. Environ. 34, 19–25 (1990).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement: 2. Applications,” Appl. Opt. 25, 48–57 (1986).
[CrossRef]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active-passive airborne ocean color measurement: 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[CrossRef]

F. E. Hoge, R. N. Swift, “Airborne dual-laser excitation and mapping of phytoplankton photopigments in a gulf stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne mapping of laser-induced fluorescence of chlorophyll a and phycoerythrin in a Gulf Stream warm core ring,” in Mapping Strategies in Chemical Oceanography, Advances in Chemistry Series No. 209, A. Zirino, ed. (American Chemical Society, Washington, D.C., 1985), paper 18, pp. 335–372.

Hooker, S. B.

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Kim, H. H.

Lewis, M. R.

A. M. Ciotti, J. J. Cullen, M. R. Lewis, “A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color,” J. Geophys. Res. 104, 1559–1578 (1999).
[CrossRef]

Lyon, P. E.

Malinsky-Rushansky, N.

N. Malinsky-Rushansky, T. Berman, T. Berner, Y. Z. Yacobi, Z. Dubinsky, “Physiological characteristics of picophytoplankton isolated from Lake Kinneret: responses to light and temperature,” J. Plankton Res. 24, 1173–1183 (2002).
[CrossRef]

Maranon, E.

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Nelson, R. K.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

Nielsen, D.

Rochelle-Newall, E. J.

E. J. Rochelle-Newall, T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
[CrossRef]

E. J. Rochelle-Newall, T. R. Fisher, “Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay,” Mar. Chem. 77, 23–41 (2002).
[CrossRef]

E. J. Rochelle-Newall, T. R. Fisher, C. Fan, P. M. Glibert, “Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms,” Int. J. Remote Sens. 20, 627–641 (1999).
[CrossRef]

Siegel, D.

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Swift, R. N.

P. E. Lyon, F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties,” Appl. Opt. 43, 5886–5892 (2004).
[CrossRef] [PubMed]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31138 (2001).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynthesis Res. 66, 33–44 (2000).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sens. Environ. 34, 19–25 (1990).
[CrossRef]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active-passive airborne ocean color measurement: 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement: 2. Applications,” Appl. Opt. 25, 48–57 (1986).
[CrossRef]

F. E. Hoge, R. N. Swift, “Airborne dual-laser excitation and mapping of phytoplankton photopigments in a gulf stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne mapping of laser-induced fluorescence of chlorophyll a and phycoerythrin in a Gulf Stream warm core ring,” in Mapping Strategies in Chemical Oceanography, Advances in Chemistry Series No. 209, A. Zirino, ed. (American Chemical Society, Washington, D.C., 1985), paper 18, pp. 335–372.

Swift, Robert N.

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, Robert N. Swift, J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynthesis Res. 66, 45–56 (2000).
[CrossRef]

Vodacek, A.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Wright, C. W.

P. E. Lyon, F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties,” Appl. Opt. 43, 5886–5892 (2004).
[CrossRef] [PubMed]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31138 (2001).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, Robert N. Swift, J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynthesis Res. 66, 45–56 (2000).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynthesis Res. 66, 33–44 (2000).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

Yacobi, Y. Z.

N. Malinsky-Rushansky, T. Berman, T. Berner, Y. Z. Yacobi, Z. Dubinsky, “Physiological characteristics of picophytoplankton isolated from Lake Kinneret: responses to light and temperature,” J. Plankton Res. 24, 1173–1183 (2002).
[CrossRef]

Yungel, J. K.

P. E. Lyon, F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties,” Appl. Opt. 43, 5886–5892 (2004).
[CrossRef] [PubMed]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31138 (2001).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, Robert N. Swift, J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynthesis Res. 66, 45–56 (2000).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement: 2. Applications,” Appl. Opt. 25, 48–57 (1986).
[CrossRef]

Yungel, J. Y.

Appl. Opt. (11)

H. H. Kim, “New algae mapping technique by the use of an airborne laser fluorosensor,” Appl. Opt. 12, 1454–1459 (1973).
[CrossRef] [PubMed]

M. P. F. Bristow, D. Nielsen, D. Bundy, F. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne dual-laser excitation and mapping of phytoplankton photopigments in a gulf stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active-passive airborne ocean color measurement: 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement: 2. Applications,” Appl. Opt. 25, 48–57 (1986).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

P. E. Lyon, F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties,” Appl. Opt. 43, 5886–5892 (2004).
[CrossRef] [PubMed]

Int. J. Remote Sens. (1)

E. J. Rochelle-Newall, T. R. Fisher, C. Fan, P. M. Glibert, “Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms,” Int. J. Remote Sens. 20, 627–641 (1999).
[CrossRef]

J. Geophys. Res. (3)

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

A. M. Ciotti, J. J. Cullen, M. R. Lewis, “A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color,” J. Geophys. Res. 104, 1559–1578 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31138 (2001).
[CrossRef]

J. Mar. Res. (1)

J. W. Campbell, W. E. Esaias, “Spatial patterns in temperature and chlorophyll on Nantucket Shoals from airborne remote sensing data, May 7–9, 1981,” J. Mar. Res. 43, 139–161 (1985).
[CrossRef]

J. Plankton Res. (1)

N. Malinsky-Rushansky, T. Berman, T. Berner, Y. Z. Yacobi, Z. Dubinsky, “Physiological characteristics of picophytoplankton isolated from Lake Kinneret: responses to light and temperature,” J. Plankton Res. 24, 1173–1183 (2002).
[CrossRef]

Limnol. Oceanogr. (1)

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Mar. Chem. (2)

E. J. Rochelle-Newall, T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
[CrossRef]

E. J. Rochelle-Newall, T. R. Fisher, “Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay,” Mar. Chem. 77, 23–41 (2002).
[CrossRef]

Mar. Ecol. Prog. Ser. (1)

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Photosynthesis Res. (2)

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynthesis Res. 66, 33–44 (2000).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, Robert N. Swift, J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynthesis Res. 66, 45–56 (2000).
[CrossRef]

Remote Sens. Environ. (1)

F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sens. Environ. 34, 19–25 (1990).
[CrossRef]

Other (1)

F. E. Hoge, R. N. Swift, “Airborne mapping of laser-induced fluorescence of chlorophyll a and phycoerythrin in a Gulf Stream warm core ring,” in Mapping Strategies in Chemical Oceanography, Advances in Chemistry Series No. 209, A. Zirino, ed. (American Chemical Society, Washington, D.C., 1985), paper 18, pp. 335–372.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ship-based chlorophyll biomass from 3–10 May 1998 compared with airborne chlorophyll biomass retrieval using 8 May 1998 airborne laser-induced and water Raman normalized chlorophyll and CDOM fluorescence, ChlF/R and CDOMF/R. (a) Location of 16 ship-derived chlorophyll biomass values (box symbol) along the Middle Atlantic Bight airborne flight line (solid line). (b) Comparison of the ship-derived chlorophyll biomass, 〈Chl〉, with airborne chlorophyll biomass retrieval, using airborne ChlF/R (but not CDOMF/R). (c) Comparison of ship-derived chlorophyll biomass, 〈Chl〉, with airborne retrieval of chlorophyll biomass using both airborne ChlF/R and CDOMF/R. Comparison of (b) and (c) and the regression coefficients therein shows that the use of both ChlF/R and CDOMF/R provides a more accurate retrieval than ChlF/R alone.

Fig. 2
Fig. 2

Comparison of ship-based chlorophyll biomass, 〈Chl〉, using ChlF/R [from shipboard laser fluorometer (SLF)] and CDOMF/R (from concurrent airborne lidar). (a) Seventy-nine 3–10 May 1998 ship-based chlorophyll biomass values and coincident NASA Shipboard Laser Fluorometer (SLF) chlorophyll fluorescence, ChlF/R. The CDOMF/R is obtained from contemporary 9 May 1998 airborne overflight of the AOL. (b) The ship-based chlorophyll biomass values compared with the airborne retrieved biomass values using only ChlF/R (but not CDOMF/R). (c) Ship-based chlorophyll biomass values compared with the airborne retrieved biomass values using both ChlF/R and CDOMF/R. Comparison of (b) and (c) and the regression coefficients therein shows that the use of both ChlF/R and CDOMF/R provides a more accurate retrieval than ChlF/R alone.

Fig. 3
Fig. 3

Airborne lidar retrieval theory demonstration using SeaWiFS OC4v4 chlorophyll biomass data as a surrogate for shipboard-derived chlorophyll biomass. (a) Along the airborne flight line, the shipboard surrogate chlorophyll is selected from this SeaWiFS OC4v4 chlorophyll biomass image (composed of an average of 20 images taken between 2 May and 26 May 1998). (b) Comparison of the surrogate ship-based chlorophyll compared with airborne retrieval using only the 8 May 1998 airborne ChlF/R (and not the CDOMF/R). (c) Comparison of the surrogate ship-based chlorophyll compared with 8 May 1998 airborne retrieval using both the airborne ChlF/R and CDOMF/R. Comparison of (b) and (c) and the regression coefficients therein shows that the use of both ChlF/R and CDOMF/R results in a more accurate retrieval than ChlF/R alone.

Fig. 4
Fig. 4

Demonstration of airborne lidar chlorophyll biomass retrieval theory using only the 2–26 May 1998 SeaWiFS composite data as airborne lidar surrogates. (a) Airborne chlorophyll biomass retrieval using only the ChlF/R surrogates (12,031 SeaWiFS retrieved aph IOP values) regressed against the shipboard biomass surrogates (12,031 SeaWiFS OC4v4 chlorophyll values). (b) Airborne chlorophyll biomass retrieval using surrogates for both the airborne ChlF/R and CDOMF/R (the SeaWiFS retrieved aph and aCDOM) regressed against the shipboard biomass surrogates (SeaWiFS OC4v4 chlorophyll product). Comparison of (a) and (b) shows an improved retrieval when both ChlF/R and CDOMF/R are used.

Tables (1)

Tables Icon

Table 1 Numerical Constants for Algorithm Eqs. (5) and (6)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Chl = exp ( q 5 x 5 + q 4 x 4 + q 3 x 3 + q 2 x 2 + q 1 x + q 0 ) ,
x ln [ a ph + p ( a CDOM ) 1 / 2 ] .
a CDOM [ F ( 450 ) / R ( 402 ) ] CDOM F / R ,
a ph [ F ( 683 ) / R ( 645 ) ] Chl F / R ,
Chl = exp ( Q 3 X 3 + Q 2 X 2 + Q 1 X + Q 0 ) ,
X ln [ Chl F / R + P × CDOM F / R ] .

Metrics